【題目】(1)如圖,已知、兩點(diǎn)把線段分成三部分,是的中點(diǎn),若,求線段的長.
(2)如圖、、是內(nèi)的三條射線,、分別是、的平分線,是的3倍,比大,求的度數(shù).
【答案】(1) 3;(2)80°.
【解析】
(1)先由B、C兩點(diǎn)把線段AD分成2:4:3的三部分,知CD= AD,即AD=3CD,求出AD的長,再根據(jù)M是AD的中點(diǎn),得出MD= AD,求出MD的長,最后由MC=MD-CD,求出線段MC的長;
(2)設(shè)∠AOM的度數(shù)為x,則∠NOC的度數(shù)為3x,根據(jù)OM、ON分別是∠AOB、∠BOC的平分線即可得出∠MOB=∠AOM=x、∠BON=∠NOC=3x,結(jié)合∠BON比∠MOB大20°即可得出關(guān)于x的一元一次方程,解之即可得出x的值,再將其代入∠AOC=8x中即可得出結(jié)論.
解:(1)∵B、C兩點(diǎn)把線段AD分成2:4:3的三部分,2+4+3=9,
∴,
又∵CD=6,
∴AD=18,
∵M是AD的中點(diǎn),
,
∴MC=MD-CD=9-6=3.
(2) 解:設(shè)∠AOM的度數(shù)為x,則∠NOC的度數(shù)為3x,
∵OM、ON分別是∠AOB、∠BOC的平分線,
∴∠MOB=∠AOM=x,∠BON=∠NOC=3x,
∵∠BON比∠MOB大20°,
∴3x-x=20°,
∴x=10°,
∴∠AOC=∠AOM+∠MOB+∠BON+∠NOC=8x=80°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,O是AB上一點(diǎn),以OA為半徑的⊙O與BC相交于點(diǎn)D,與AB交于點(diǎn)E,AD平分∠FAB,連接ED并延長交AC的延長線于點(diǎn)F.
(1)求證:BC為⊙O的切線.
(2)求證:AE=AF;
(3)若DE=3,sin∠BDE=,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小陽在如圖①所示的扇形舞臺(tái)上沿O-M-N勻速行走,他從點(diǎn)O出發(fā),沿箭頭所示的方向經(jīng)過點(diǎn)M再走到點(diǎn)N,共用時(shí)70秒.有一臺(tái)攝像機(jī)選擇了一個(gè)固定的位置記錄了小陽的走路過程,設(shè)小陽走路的時(shí)間為t(單位:秒),他與攝像機(jī)的距離為y(單位:米),表示y與t的函數(shù)關(guān)系的圖象大致如圖②,則這個(gè)固定位置可能是圖①中的點(diǎn)_______(在點(diǎn)P、N、Q、M、O中選。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究活動(dòng):
利用函數(shù)的圖象(如圖1)和性質(zhì),探究函數(shù)的圖象與性質(zhì).
下面是小東的探究過程,請補(bǔ)充完整:
(1)函數(shù)的自變量x的取值范圍是___________;
(2)如圖2,小東列表描出了函數(shù)圖象上部分點(diǎn),請畫出函數(shù)圖象;
(3)解決問題:設(shè)方程的兩根為、,且,方程
的兩根為、,且.若,則、、、的大小關(guān)系為_____________________(用“<”連接).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解同學(xué)們每月零花錢的數(shù)額,校園小記者隨機(jī)調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制出了如下兩個(gè)尚不完整的統(tǒng)計(jì)圖表.
請根據(jù)以上圖表,解答下列問題:
(1)填空:這次被調(diào)查的同學(xué)共有__________人,a+b=__________,m=__________;
(2)求扇形統(tǒng)計(jì)圖中扇形C的圓心角度數(shù);
(3)該校共有學(xué)生1000人,請估計(jì)每月零花錢的數(shù)額在60≤x<120范圍的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)C的坐標(biāo)為(1,).
(1)求圖象過點(diǎn)B的反比例函數(shù)的解析式;
(2)求圖象過點(diǎn)A,B的一次函數(shù)的解析式;
(3)在第一象限內(nèi),當(dāng)以上所求一次函數(shù)的圖象在所求反比例函數(shù)的圖象下方時(shí),請直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】年春節(jié)期間,某物業(yè)公司組織兩個(gè)小區(qū)的部分居民去旅游,已知某景點(diǎn)的門票價(jià)格如下表:
購票人數(shù)人 | 以上 | ||
每人門票價(jià)元 |
小區(qū)①的人數(shù)少于人,小區(qū)②的人數(shù)多于人且少于人,如果兩小區(qū)單獨(dú)購票,則一共支付元;如果兩小區(qū)聯(lián)合起來作為一個(gè)團(tuán)體購票,因?yàn)槿藬?shù)超過人,只需花費(fèi)元請問:
(1)兩個(gè)小區(qū)各有多少人?
(2)團(tuán)體購票與單獨(dú)購票相比較,兩個(gè)小區(qū)各節(jié)省了多少錢?
(3)若小區(qū)①單獨(dú)購票,請為小區(qū)①設(shè)計(jì)一種最省錢的購買方案,并計(jì)算能省多少元錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,連接BE交對角線AC于點(diǎn)F,則∠EFC=_____°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com