用換元法解分式方程
x
x+1
+5(
x+1
x
)+6=0
時(shí),若設(shè)
x
x+1
=y
,可將分式方程化成的整式方程為
y2+6y+5=0
y2+6y+5=0
分析:首先根據(jù)題意可將原分式方程化為:y+
5
y
+6=0,然后方程兩邊同乘以y,即可求得答案.
解答:解:根據(jù)題意可將原分式方程化為:y+
5
y
+6=0,
方程兩邊同乘以y得:y2+6y+5=0.
故答案為:y2+6y+5=0.
點(diǎn)評(píng):此題考查了換元法解分式方程的知識(shí).此題難度不大,注意掌握整體思想的應(yīng)用是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用換元法解分式方程x2+
1
x2
-2(x+
1
x
)-1=0時(shí),如果設(shè)y=x+
1
x
,那么原方程可化為關(guān)于y的一元二次方程的一般形式是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用換元法解分式方程
2x-1
x
-
x
2x-1
=2時(shí),如果設(shè)
2x-1
x
=y,并將原方程化為關(guān)于y的整式方程,那么這個(gè)整式方程是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用換元法解分式方程
1-x
x2+2
+
x2+2
2(1-x)
=
3
2
,設(shè)
1-x
x2+2
=y
,則原分式方程換元整理后的整式方程為( 。
A、y+
1
y
=
3
2
B、y2+y=
3
2
C、2y2-3y+1=0
D、2y2-3y+2=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用換元法解分式方程:
x2-2
x
+
x
x2-2
=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用換元法解分式方程x2-3x-1=
12x2-3x
時(shí),如果設(shè)y=x2-3x,那么換元后化簡(jiǎn)所得的整式方程是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案