【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(-5,0),以OA為半徑作半圓,點(diǎn)C是第一象限內(nèi)圓周上一動(dòng)點(diǎn),連結(jié)AC、BC,并延長(zhǎng)BC至點(diǎn)D,使CD=BC,過(guò)點(diǎn)D作x軸垂線,分別交x軸、直線AC于點(diǎn)E、F,點(diǎn)E為垂足,連結(jié)OF.
(1)當(dāng)∠BAC=30時(shí),求△ABC的面積;
(2)當(dāng)DE=8時(shí),求線段EF的長(zhǎng);
(3)在點(diǎn)C運(yùn)動(dòng)過(guò)程中,是否存在以點(diǎn)E、O、F為頂點(diǎn)的三角形與△ABC相似,若存在,請(qǐng)求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)3;(3)存在,點(diǎn)E的坐標(biāo)為(,0) ;(,0);(,0)
【解析】
(1)根據(jù)圓周角定理求得∠ACB=90°,根據(jù)30°的直角三角形的性質(zhì)求得BC,進(jìn)而根據(jù)勾股定理求得AC,然后根據(jù)三角形面積公式即可求得;
(2)連接AD,由垂直平分線的性質(zhì)得AD=AB=10,又DE=8,在Rt△ODE中,由勾股定理求AE,依題意證明△AEF∽△DEB,利用相似比求EF;
(3)當(dāng)以點(diǎn)E、O、F為頂點(diǎn)的三角形與△ABC相似時(shí),分為兩種情況:①當(dāng)交點(diǎn)E在O,B之間時(shí);②當(dāng)點(diǎn)E在O點(diǎn)的左側(cè)時(shí);分別求E點(diǎn)坐標(biāo).
(1)∵AB是⊙O的直徑,
∴∠ACB=90°,
在Rt△ABC中,AB=10,∠BAC=30°,
∴BC=AB=5,
∴AC=,
∴S△ABC=ACBC=;
(2)連接AD,
∵∠ACB=90°,CD=BC,
∴AD=AB=10,
∵DE⊥AB,
∴AE==6,
∴BE=ABAE=4,
∴DE=2BE,
∵∠AFE+∠FAE=90°, ∠DBE+∠FAE=90°,
∴∠AFE=∠DBE,
∵∠AEF=∠DEB=90°,
∴△AEF∽△DEB,
∴=2,
∴EF=AE=×6=3;
(3)連接EC,設(shè)E(x,0),
當(dāng)的度數(shù)為60°時(shí),點(diǎn)E恰好與原點(diǎn)O重合;
①0°<的度數(shù)<60°時(shí),點(diǎn)E在O、B之間,∠EOF>∠BAC=∠D,
又∵∠OEF=∠ACB=90°,由相似知∠EOF=∠EBD,此時(shí)有△EOF∽△EBD,
∴,
∵EC是Rt△BDE斜邊的中線,
∴CE=CB,
∴∠CEB=∠CBE,
∴∠EOF=∠CEB,
∴OF∥CE,
∴△AOF∽△AEC
∴,
∴,即,
解得x=,因?yàn)?/span>x>0,
∴x=;
②60°<的度數(shù)<90°時(shí),點(diǎn)E在O點(diǎn)的左側(cè),
若∠EOF=∠B,則OF∥BD,
∴OF=BC=BD,
∴即解得x=,
若∠EOF=∠BAC,則x=,
綜上點(diǎn)E的坐標(biāo)為(,0) ;(,0);(,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在去年的體育中考中,某校6名學(xué)生的體育成績(jī)統(tǒng)計(jì)如下表:
成績(jī) | 17 | 18 | 20 |
人數(shù) | 2 | 3 | 1 |
則下列關(guān)于這組數(shù)據(jù)的說(shuō)法錯(cuò)誤的是( )
A.眾數(shù)是18B.中位數(shù)是18C.平均數(shù)是18D.方差是2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,⊙O的半徑為2,點(diǎn)P是AB邊上的動(dòng)點(diǎn),過(guò)點(diǎn)P作⊙O的一條切線PC(點(diǎn)C為切點(diǎn)),則線段PC長(zhǎng)的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】超市銷售某種兒童玩具,如果每件利潤(rùn)為40元(市場(chǎng)管理部門(mén)規(guī)定,該種玩具每件利潤(rùn)不能超過(guò)60元),每天可售出50件.根據(jù)市場(chǎng)調(diào)查發(fā)現(xiàn),銷售單價(jià)每增加2元,每天銷售量會(huì)減少1件.設(shè)銷售單價(jià)增加元,每天售出件.
(1)請(qǐng)寫(xiě)出與之間的函數(shù)表達(dá)式;
(2)當(dāng)為多少時(shí),超市每天銷售這種玩具可獲利潤(rùn)2250元?
(3)設(shè)超市每天銷售這種玩具可獲利元,當(dāng)為多少時(shí)最大,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在中,弦,連接、;
(1)如圖1,求證:;
(2)如圖2,在線段上取點(diǎn),連接并延長(zhǎng)交于點(diǎn),交于點(diǎn),,連接、、,,求的正切值;
(3)如圖3,在(2)的條件下,交于點(diǎn),,,求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,將二次函數(shù)y=x2+2x+1的圖象沿x軸翻折,然后向右平移1個(gè)單位,再向上平移5個(gè)單位,得到二次函數(shù)y=ax2+bx+c的圖象.函數(shù)y=x2+2x+1的圖象的頂點(diǎn)為點(diǎn)A.函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)為點(diǎn)C,兩函數(shù)圖象分別交于B、D兩點(diǎn).
(1)求函數(shù)y=ax2+bx+c的解析式;
(2)如圖2,連接AD、CD、BC、AB,判斷四邊形ABCD的形狀,并說(shuō)明理由.
(3)如圖3,連接BD,點(diǎn)M是y軸上的動(dòng)點(diǎn),在平面內(nèi)是否存在一點(diǎn)N,使以B、D、M、N為頂點(diǎn)的四邊形為矩形?若存在,請(qǐng)求出N點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景點(diǎn)試開(kāi)放期間,團(tuán)隊(duì)收費(fèi)方案如下:不超過(guò)30人時(shí),人均收費(fèi)120元;超過(guò)30人且不超過(guò)m(30<m≤100)人時(shí),每增加1人,人均收費(fèi)降低1元;超過(guò)m人時(shí),人均收費(fèi)都按照m人時(shí)的標(biāo)準(zhǔn).設(shè)景點(diǎn)接待有x名游客的某團(tuán)隊(duì),收取總費(fèi)用為y元.
(1)求y關(guān)于x的函數(shù)表達(dá)式;
(2)景點(diǎn)工作人員發(fā)現(xiàn):當(dāng)接待某團(tuán)隊(duì)人數(shù)超過(guò)一定數(shù)量時(shí),會(huì)出現(xiàn)隨著人數(shù)的增加收取的總費(fèi)用反而減少這一現(xiàn)象.為了讓收取的總費(fèi)用隨著團(tuán)隊(duì)中人數(shù)的增加而增加,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明對(duì)函數(shù)的圖象和性質(zhì)進(jìn)行了探究.已知當(dāng)自變量的值為或時(shí),函數(shù)值都為;當(dāng)自變量的值為或時(shí),函數(shù)值都為.探究過(guò)程如下,請(qǐng)補(bǔ)充完整.
(1)這個(gè)函數(shù)的表達(dá)式為 ;
(2)在給出的平面直角坐標(biāo)系中,畫(huà)出這個(gè)函數(shù)的圖象并寫(xiě)出這個(gè)函數(shù)的--條性質(zhì): ;
(3)進(jìn)一步探究函數(shù)圖象并解決問(wèn)題:
①直線與函數(shù)有三個(gè)交點(diǎn),則 ;
②已知函數(shù)的圖象如圖所示,結(jié)合你所畫(huà)的函數(shù)圖象,寫(xiě)出不等式的解集: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com