如圖,將長方形紙片ABCD折疊,使頂點C落在C′處,有如下結論:
①△DCF和△DC′F關于直線DF成軸對稱,
②△DEF是等腰三角形,
③DE=DC,
其中正確的結論有
①②
①②
(至填序號).
分析:根據(jù)圖形翻折變換的性質對各小題進行逐一分析即可.
解答:解:∵△DC′F由△DCF沿直線DF翻折而成,
∴△DCF和△DC′F關于直線DF成軸對稱.故①正確;
∵△DC′F由△DCF沿直線DF翻折而成,
∴∠EFD=∠DFC,
∵AD∥BC,
∴∠DFC=∠EDF,
∴∠EFD=∠EDF,
∴EF=ED,
∴△DEF是等腰三角形,故②正確;
∵△DC′F由△DCF沿直線DF翻折而成,
∴CD=C′D,∠C=∠C′=90°,
∴DE≠C′D,
∴DE≠DC,故③錯誤.
故答案為:①②.
點評:本題考查的是翻折變換,熟知折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等是解答此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

15、如圖,將長方形紙片折疊,使A點落BC上的F處,折痕為BE,若沿EF剪下,則折疊部分是一個正方形,其數(shù)學原理是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

19、如圖,將長方形紙片的一角折疊,使頂點A落在A′處,EF為折痕,再將另一角折疊,使頂點B落在EA′上的B′點處,折痕為EG,則∠FEG等于
90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,將長方形紙片的一角折疊,使頂點A落在點A′處,BC為折痕,若BE是∠A′BD的角平分線,求∠CBE的度數(shù),并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將長方形紙片的一角斜折,使頂點A落在A′處,EF為折痕;再將另一角斜折,使頂點B落在EA′上B′點處,折痕為EG;觀察并估計∠FEG=
90°
90°
.再測量進行驗證.你能說出理由嗎?若被折角∠AEF=30°,求∠A′EB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將長方形紙片ABCD沿對角線AC折疊,使點B落在點B′處,CB′交AD于點M.試說明△AMC的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案