【題目】請從以下兩個小題中任選一個作答,若多選,則按所選的第一題計分.
A.如圖,在平面直角坐標系中,點的坐標為,沿軸向右平移后得到,點的對應點是直線上一點,則點與其對應點間的距離為__________.
B.比較__________的大。
【答案】5 >
【解析】
A:根據(jù)平移的性質得到OA′=OA,OO′=BB′,根據(jù)點A′在直線求出A′的橫坐標,進而求出OO′的長度,最后得到BB′的長度;B:根據(jù)任意角的正弦值等于它余角的余弦值將sin53°化為cos37°,再進行比較.
A:由平移的性質可知,OA′=OA=4,OO′=BB′.因為點A′在直線上,將y=4代入,得到x=5.所以OO′=5,又因為OO′=BB′,所以點B與其對應點B′間的距離為5.故答案為5.
B:sin53°=cos(90°-53°)=cos37°,
tan37°= ,
根據(jù)正切函數(shù)與余弦函數(shù)圖像可知,tan37°>tan30°,cos37°>cos45°,
即tan37°> ,cos37°< ,
又∵,∴tan37°<cos37°,即sin53°>tan37°.故答案是>.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一間房子的兩墻之間有一個底端在點的梯子,當它靠在一側墻上時,梯子的頂端在點;當它靠在另一側墻上時梯子的頂端在點.已知,,點到地面的垂直距離為米,則點到地面的垂直距離約是________米(精確到).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一座建于若干年前的水庫大壩的橫斷面如圖所示,其中背水面的整個坡面是長為米、寬為米的矩形.現(xiàn)需將其整修并進行美化,方案如下:①將背水坡的坡度由改為;②用一組與背水坡面長邊垂直的平行線將背水坡面分成塊相同的矩形區(qū)域,依次相間地種草與栽花.
(1)求整修后背水坡面的面積;
(2)如果栽花的成本是每平方米元,種草的成本是每平方米元,那么種植花草至少需要多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解中學生“平均每天體育鍛煉時間”的情況,某地區(qū)教育部門隨機調查了若干名中學生,根據(jù)調查結果制作統(tǒng)計圖①和圖②,請根據(jù)相關信息,解答下列問題:
(1)本次接受隨機抽樣調查的中學生人數(shù)為_______,圖①中m的值是_____ ;
(2)求本次調查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(3)根據(jù)統(tǒng)計數(shù)據(jù),估計該地區(qū)250000名中學生中,每天在校體育鍛煉時間大于等于1.5h的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的與的不符對應值如下表:
且方程的兩根分別為, ,下面說法錯誤的是( ).
A. , B.
C. 當時, D. 當時,有最小值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】桌面上放有4張卡片,正面分別標有數(shù)字1,2,3,4,這些卡片除數(shù)字外完全相同.把這些卡片反面朝上洗勻后放在桌面上,甲從中任意抽出一張,記下卡片上的數(shù)字后仍放反面朝上放回洗勻,乙從中任意抽出一張,記下卡片上的數(shù)字,然后將這兩數(shù)相加.
(1)請用列表或畫樹狀圖的方法求兩數(shù)和為5的概率;
(2)若甲與乙按上述方式做游戲,當兩數(shù)之和為5時,甲勝;反之則乙勝;若甲勝一次得12分,那么乙勝一次得多少分,才能使這個游戲對雙方公平?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某農場急需銨肥8噸,在該農場南北方向分別有一家化肥公司A、B,A公司有銨肥3噸,每噸售價750元;B公司有銨肥7噸,每噸售價700元,汽車每千米的運輸費用b(單位:元/千米)與運輸重量a(單位:噸)的關系如圖所示.
(1)根據(jù)圖象求出b關于a的函數(shù)解析式(包括自變量的取值范圍);
(2)若農場到B公司的路程是農場到A公司路程的2倍,農場到A公司的路程為m千米,設農場從A公司購買x噸銨肥,購買8噸銨肥的總費用為y元(總費用=購買銨肥費用+運輸費用),求出y關于x的函數(shù)解析式(m為常數(shù)),并向農場建議總費用最低的購買方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中,,點為三條角平分線的交點,于,于,于,且,,,則點到三邊、、的距離為( )
A. 2cm,2cm,2cm B. 3cm,3cm,3cm
C. 4cm,4cm,4cm D. 2cm,3cm,5cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC,垂足為點F,分析下列四個結論:①△AEF∽△CAB;②CF=2AF;③S△AEF:S△CAB=1:4;④AF2=2EF2.其中正確的結論有( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com