【題目】如圖,在四邊形ABCD中,AC、BD相交于點O,且AOCO,ABCD

1)求證:ABCD;

2)若∠OAB=∠OBA,求證:四邊形ABCD是矩形.

【答案】1)見解析;(2)見解析.

【解析】

1)根據(jù)ABCD,即可證明OAB=∠OCD,再結合題意證明OAB≌△OCD,即可證明ABCD.

2)在(1)的基礎上證明四邊形ABCD是平行四邊形,再結合對角線即可證明四邊形ABCD是矩形.

1)證明:∵ABCD,

∴∠OAB=∠OCD

在△OAB和△OCD中,

,

∴△OAB≌△OCD,

ABCD

2)證明:∵△OAB≌△OCD

ABCD,

ABCD

∴四邊形ABCD是平行四邊形,

OAACOBBD,

∵∠OAB=∠OBA,

OAOB,

ACBD,

∴平行四邊形ABCD是矩形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形的頂點與原點重合,點軸的正半軸上,點在反比例函數(shù)的圖象上,點的坐標為

1)求的值;

2)若將菱形沿軸正方向平移,當菱形的另一個頂點恰好落在函數(shù)的圖象上時,求菱形平移的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】襄陽市精準扶貧工作已進入攻堅階段.貧困戶張大爺在某單位的幫扶下,把一片坡地改造后種植了優(yōu)質水果藍莓,今年正式上市銷售.在銷售的30天中,第一天賣出20千克,為了擴大銷量,采取了降價措施,以后每天比前一天多賣出4千克.第x天的售價為y/千克,y關于x的函數(shù)解析式為 且第12天的售價為32/千克,第26天的售價為25/千克.已知種植銷售藍莓的成木是18/千克,每天的利潤是W元(利潤=銷售收入﹣成本).

(1)m=   ,n=   ;

(2)求銷售藍莓第幾天時,當天的利潤最大?最大利潤是多少?

(3)在銷售藍莓的30天中,當天利潤不低于870元的共有多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場經營一批進價為2元的小商品,在市場營銷中發(fā)現(xiàn)日銷售單價x元與日銷售量y件有如下關系:

x

3

5

9

11

y

18

14

6

2

1)預測此商品日銷售單價為11.5元時的日銷售量;

2)設經營此商品日銷售利潤(不考慮其他因素)為P元,根據(jù)銷售規(guī)律,試求日銷售利潤P元與銷售單價x元之間的函數(shù)關系式,問日銷售利潤P是否存在最大值或最小值?若有,試求出;若無,請說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某旅行社的一則廣告如下:

甲公司想分批組織員工到延安紅色旅游學習.

1)如果第一批組織40人去學習,則公司應向旅行社交費   元;

2)如果公司計劃用29250元組織第一批員工去學習,問這次旅游學習應安排多少人參加?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,DAB中點,過點DDF//BCAC于點E,且DE=EF,連接AFCF,CD

1)求證:四邊形ADCF為平行四邊形;

2)若∠ACD=45°,∠EDC=30°,BC=4,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,對于任意兩點P1(x1y1),P2(x2,y2),如果,則稱P1P2互為“d-距點”.例如:點P1(3,6),點P2(1,7),由d=|3-1|+|6-7|=3,可得點P1P2互為“3-距點”.

1)在點D(-2-2),E(5-1),F(04)中,原點O的“4-距點"____(填字母);

2)已知點A(2,1),點B(0,b),過點B作平行于x軸的直線l

①當b=3時,直線l上點A的“2-距點"的坐標為_______;

②若直線l上存在點A2-距點”,求b的取值范圍:

3)已知點M(1,2),N(3,2)C(m,0),⊙C的半徑為,若在線段MN上存在點P,在⊙C上存在點Q,使得點P與點Q互為“5-距點",直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,網格的每個小正方形邊長均為1,每個小正方形的頂點稱為格點.已知的頂點都在格點上,線段的中點為

1)以點為旋轉中心,分別畫出把順時針旋轉后的,

2)利用(1)變換后所形成的圖案,解答下列問題:

①直接寫出四邊形,四邊形的形狀;

②直接寫出的值;

③設的三邊,,請證明勾股定理.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】教育局為了了解初一學生參加社會實踐活動的天數(shù),隨機抽查本市部分初一學生參加社會實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖(如圖).請你根據(jù)圖中提供的信息,回答下列問題:

1)這次共抽取   名學生進行統(tǒng)計調查,補全條形圖;

2   ,該扇形所對圓心角的度數(shù)為   

3)如果該市有初一學生人,請你估計活動時間不少于的大約有多少人?

查看答案和解析>>

同步練習冊答案