【題目】如圖1,拋物線(xiàn)y=﹣x2+2x+3與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C.
(1)直接寫(xiě)出A、B、C三點(diǎn)的坐標(biāo)和拋物線(xiàn)的對(duì)稱(chēng)軸;
(2)如圖2,連接BC,與拋物線(xiàn)的對(duì)稱(chēng)軸交于點(diǎn)E,點(diǎn)P為線(xiàn)段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PF∥DE交拋物線(xiàn)于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m;用含m的代數(shù)式表示線(xiàn)段PF的長(zhǎng);并求出當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形?
(3)如圖3,連接AC,在x軸上是否存在點(diǎn)Q,使△ACQ為等腰三角形,若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)A(﹣1,0),B(3,0),C(0,3).對(duì)稱(chēng)軸是直線(xiàn)x=1;(2)PF=﹣m2+3m.當(dāng)m=2時(shí),四邊形PEDF為平行四邊形;(3)存在,Q1(4,0),Q2(1,0),Q3(﹣1,0),Q4(﹣﹣1,0).
【解析】試題分析:(1)通過(guò)解方程﹣x2+2x+3=0可得A點(diǎn)和B點(diǎn)坐標(biāo),再計(jì)算自變量為0時(shí)的函數(shù)值可得到C點(diǎn)坐標(biāo),然后利用對(duì)稱(chēng)性可確定拋物線(xiàn)的對(duì)稱(chēng)軸;(2)先利用待定系數(shù)法求出直線(xiàn)BC的函數(shù)關(guān)系式為y=﹣x+3,再確定E,D點(diǎn)坐標(biāo),E(1,2),D(1,4),表示出P(m,﹣m+3),F(m,﹣m2+2m+3),兩點(diǎn)縱坐標(biāo)相減便得PF=﹣m2+3m,接著計(jì)算出DE=2,然后利用平行四邊形的判定方法,即一組對(duì)邊平行且相等的四邊形是平行四邊形,得到﹣m2+3m=2,再解方程求出m即可.(3)分三種情況:QA=QC;CA=CQ;AC=AQ;進(jìn)行討論即可求解.
試題解析:(1)當(dāng)y=0時(shí),﹣x2+2x+3=0,即-(x-3)(x+1)=0,解得x1=﹣1,x2=3,則A(﹣1,0),B(3,0),當(dāng)x=0時(shí),y=﹣x2+2x+3=3,則C(0,3);利用A,B點(diǎn)坐標(biāo)求出拋物線(xiàn)的對(duì)稱(chēng)軸是直線(xiàn)x==1;所以A(﹣1,0),B(3,0),C(0,3).對(duì)稱(chēng)軸是直線(xiàn)x=1;(2)設(shè)直線(xiàn)BC的函數(shù)關(guān)系式為y=kx+b,把B(3,0),C(0,3)分別代入得,解得k=﹣1,b=3,∴直線(xiàn)BC的函數(shù)關(guān)系式為y=﹣x+3,∵對(duì)稱(chēng)軸是直線(xiàn)x=1,∴E(1,2),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴頂點(diǎn)D的坐標(biāo)為(1,4),當(dāng)x="m" 時(shí),y=﹣m+3,∴P(m,﹣m+3),F(m,﹣m2+2m+3),∴線(xiàn)段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,即線(xiàn)段PF=﹣m2+3m,又線(xiàn)段DE=4﹣2=2,∵PF∥DE,∴當(dāng)PF=ED時(shí),四邊形PEDF為平行四邊形,即﹣m2+3m=2,解得m1=2,m2=1(不合題意,舍去),∴當(dāng)m=2時(shí),四邊形PEDF為平行四邊形;(3)分三種情況:QA=QC;CA=CQ;AC=AQ;進(jìn)行討論:設(shè)在x軸上存在點(diǎn)Q(x,0),使△ACQ為等腰三角形.分三種情況:①如果QA=QC,那么(x+1)2=x2+32,解得x=4,則點(diǎn)Q1(4,0);②如果CA=CQ,那么12+32=x2+32,解得x1=1,x2=﹣1(不合題意舍去),則點(diǎn)Q2(1,0);③如果AC=AQ,那么12+32=(x+1)2,解得x1=﹣1,x2=﹣﹣1,則點(diǎn)Q3(﹣1,0),Q4(﹣﹣1,0);綜上所述存在點(diǎn)Q,使△ACQ為等腰三角形.它的坐標(biāo)為:Q1(4,0),Q2(1,0),Q3(﹣1,0),Q4(﹣﹣1,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正比例函數(shù)y1=k1x與一次函數(shù)y2=k2x-9的圖象交于點(diǎn)P(3,-6),求 這兩個(gè)函數(shù)的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲班有45人,乙班有39人.現(xiàn)在需要從甲、乙班各抽調(diào)一些同學(xué)去參加歌詠比賽.如果從甲班抽調(diào)的人數(shù)比乙班多1人,那么甲班剩余人數(shù)恰好是乙班剩余人數(shù)的2倍.請(qǐng)問(wèn)從甲、乙兩班各抽調(diào)了多少人參加歌詠比賽?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一元二次方程x2﹣4x﹣12=0的兩根分別是一次函數(shù)y=kx+b在x軸上的橫坐標(biāo)和y軸上的縱坐標(biāo),則這個(gè)一次函數(shù)圖象與兩坐標(biāo)軸所圍成的三角形的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是邊長(zhǎng)為6的等邊三角形,P是AC邊上一動(dòng)點(diǎn),由A向C運(yùn)動(dòng)(與A、C不重合),Q是CB延長(zhǎng)線(xiàn)上一動(dòng)點(diǎn),與點(diǎn)P同時(shí)以相同的速度由B向CB延長(zhǎng)線(xiàn)方向運(yùn)動(dòng)(Q不與B重合),過(guò)P作PE⊥AB于E,PF∥BC交AB于F,連接PQ交AB于D.
(1)當(dāng)∠BQD=30°時(shí),求AP的長(zhǎng);
(2)當(dāng)運(yùn)動(dòng)過(guò)程中線(xiàn)段ED的長(zhǎng)始終保持不變,試求出ED的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)等腰三角形的三邊長(zhǎng)均滿(mǎn)足方程x2﹣9x+18=0,求此三角形的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】操作與證明:如圖1,把一個(gè)含45°角的直角三角板ECF和一個(gè)正方形ABCD擺放在一起,使三角板的直角頂點(diǎn)和正方形的頂點(diǎn)C重合,點(diǎn)E、F分別在正方形的邊CB、CD上,連接AF.取AF中點(diǎn)M,EF的中點(diǎn)N,連接MD、MN.
(1)連接AE,求證:△AEF是等腰三角形;
猜想與發(fā)現(xiàn):
(2)在(1)的條件下,請(qǐng)判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.
結(jié)論1:DM、MN的數(shù)量關(guān)系是 ;
結(jié)論2:DM、MN的位置關(guān)系是 ;
拓展與探究:
(3)如圖2,將圖1中的直角三角板ECF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,其他條件不變,則(2)中的兩個(gè)結(jié)論還成立嗎?若成立,請(qǐng)加以證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算題
(1)(﹣1)2012+(π﹣3.14)0﹣(﹣ )﹣1
(2)化簡(jiǎn)求值:(2x+y)2﹣(2x﹣y)(x+y)﹣2(x﹣2y)(x+2y),其中x= ,y=﹣2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com