【題目】探究:如圖①,點A在直線MN上,點B在直線MN外,連結(jié)AB,過線段AB的中點PPCMN,交∠MAB的平分線AD于點C,連結(jié)BC,求證:BCAD

應(yīng)用:如圖②,點B在∠MAN內(nèi)部,連結(jié)AB,過線段AB的中點PPCAM,交∠MAB的平分線AD于點C;作PEAN,交∠NAB的平分線AF于點E,連結(jié)BC、BE.若∠MAN150°,則∠CBE的大小為______度.

【答案】探究:證明見解析;應(yīng)用:150

【解析】

探究:根據(jù)角平分線的定義和平行線的性質(zhì)得出∠PCA=PAC,根據(jù)等角對等邊得出PC=PA,再得出PC=PB,利用三角形的內(nèi)角和證明即可;

應(yīng)用:根據(jù)探究中的證明得出∠BAC+BAE+CBA+ABE=180°,再由角平分線得出∠BAC+BAE=75°,最后得出答案即可.

解:探究:∵PCMN,

∴∠PCA=MAC

AD為∠MAB的平分線,

∴∠MAC=PAC

∴∠PCA=PAC

PC=PA

PA=PB,

PC=PB,

∴∠B=BCP

∵∠B+BCP+PCA+PAC=180°,

∴∠BCA=90°,

BCAD;

應(yīng)用:∵∠MAB的平分線AD,∠NAB的平分線AF,∠MAN=150°,

∴∠BAC+BAE=75°

由探究得:∠BAC+BAE+CBA+ABE=180°,

∴∠CBE=CBA+ABE=180°75°=105°

故答案為:105

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小邱同學(xué)根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,研究函數(shù)y的圖象與性質(zhì).通過分析,該函數(shù)y與自變量x的幾組對應(yīng)值如下表,并畫出了部分函數(shù)圖象如圖所示.

x

1

3

4

5

6

y

1

2

3.4

7.5

2.4

1.4

1

0.8

1)函數(shù)y的自變量x的取值范圍是   ;

2)在圖中補(bǔ)全當(dāng)1x2的函數(shù)圖象;

3)觀察圖象,寫出該函數(shù)的一條性質(zhì):   ;

4)若關(guān)于x的方程x+b有兩個不相等的實數(shù)根,結(jié)合圖象,可知實數(shù)b的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙兩人在玩轉(zhuǎn)盤游戲時,準(zhǔn)備了兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤A,B,每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每一個扇形內(nèi)標(biāo)上數(shù)字.游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,指針?biāo)竻^(qū)域的數(shù)字之和為0時,甲獲勝;數(shù)字之和為1時,乙獲勝.如果指針恰好指在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一區(qū)域為止.

(1)用畫樹狀圖或列表法求乙獲勝的概率;

(2)這個游戲規(guī)則對甲、乙雙方公平嗎?請判斷并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB90°,反比例函數(shù)y在第一象限的圖象經(jīng)過點B,則OA2AB2_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB7,BC4,∠ABC45°,射線CDABD,點P為射線CD上一動點,以PD為直徑的⊙OPAPB分別為EF,設(shè)CPx

1)求sinACD的值.

2)在點P的整個運動過程中:

①當(dāng)⊙O與射線CA相切時,求出所有滿足條件時x的值;

②當(dāng)x為何值時,四邊形DEPF為矩形,并求出矩形DEPF的面積.

3)如果將△ADC繞點D順時針旋轉(zhuǎn)150°,得△ADC′,若點A′和點C′有且只有一個點在圓內(nèi),則x的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2011山東濟(jì)南,27,9分)如圖,矩形OABC中,點O為原點,點A的坐標(biāo)為(0,8),點C的坐標(biāo)為(6,0).拋物線經(jīng)過A、C兩點,與AB邊交于點D

1)求拋物線的函數(shù)表達(dá)式;

2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設(shè)CP=m△CPQ的面積為S

S關(guān)于m的函數(shù)表達(dá)式,并求出m為何值時,S取得最大值;

當(dāng)S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解全校名同學(xué)對學(xué)校設(shè)置的體操、籃球、足球、跑步、舞蹈等課外活動項目的喜愛情況,在全校范圍內(nèi)隨機(jī)抽取了若干名同學(xué),對他們喜愛的項目(每人選一項)進(jìn)行了問卷調(diào)查,將數(shù)據(jù)進(jìn)行了統(tǒng)計,并繪制成了如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整),請回答下列問題.

1)在這次問卷調(diào)查中,共抽查了_________名同學(xué);

2)補(bǔ)全條形統(tǒng)計圖;

3)估計該校名同學(xué)中喜愛足球活動的人數(shù);

4)在體操社團(tuán)活動中,由于甲、乙、丙、丁四人平時的表現(xiàn)優(yōu)秀,現(xiàn)決定從這四人中任選兩名參加體操大賽.用樹狀圖或列表法求恰好選中甲、乙兩位同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線軸于點,交軸于點,,點的坐標(biāo)是

1)如圖1,求直線的解析式;

2)如圖2,點在第一象限內(nèi),連接,過點延長線于點,且,過點軸于點,連接,設(shè)點的橫坐標(biāo)為的而積為S,求S的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);

3)如圖3,在(2)的條件下,過點軸,連接,若,時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A(a,0)B(0,b),且a,b滿足a22abb2(b4)20,點C為線段AB上一點,連接OC

(1)直接寫出a____,b_____

(2)如圖1,POC上一點,連接PA,PB.若PAB0,∠BPC30°.求點P的縱坐標(biāo);

(3)如圖2,在(2)的條件下,點MAB上一動點,以OM為邊在OM的右側(cè)作等邊OMN,連接CN.若OCt,求ONCN的最小值(結(jié)果用含t的式子表示)

查看答案和解析>>

同步練習(xí)冊答案