【題目】如圖,為了測量某建筑物BC的高度,小明先在地面上用測角儀自A處測得建筑物頂部的仰角是30°,然后在水平地面上向建筑物前進了10m到達D處,此時遇到一斜坡,坡度i=1:,沿著斜坡前進10米到達E處測得建筑物頂部的仰角是45°,請求出該建筑物BC的高度為( 。ńY果可帶根號)
A. 5+5 B. 5+5 C. 5+10 D. 5+10
【答案】D
【解析】
過E作EF⊥AB于F,EG⊥BC與G,根據矩形的性質得到四邊形EG=FB,EF=BG,設CG=x,根據已知條件得到∠EDF=30°及直角三角形得到DF=10cos30°=5,BG=EF=10sin30°=5,AB=10+5+x,BC=x+5.在Rt△ABC中,根據三角函數的定義列方程即可得到結論.
過E作EF⊥AB于F,EG⊥BC與G.
∵CB⊥AB,∴四邊形EFBG是矩形,∴EG=FB,EF=BG,設CG=x米.
∵∠CEG=45°,∴FB=EG=CG=x.
∵DE的坡度i=1:,∴∠EDF=30°.
∵DE=10,∴DF=10cos30°=5,BG=EF=10sin30°=5,∴AB=10+5+x,BC=x+5.在Rt△ABC中,∵∠A=30°,∴BC=ABtan∠A,即x+5=(10+5+x),解得:x=5+5,∴BC=5+5+5=(5+10)米.
故選D.
科目:初中數學 來源: 題型:
【題目】如圖所示,在△ABC中,已知AD⊥BC,∠B=64°,∠C=56°,
(1)求∠BAD和∠DAC的度數;
(2)若DE平分∠ADB,求∠AED的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在世界經濟的影響下,國家采取擴大內需的政策,基建投資成為拉動內需最強有力的引擎,金強公司中標一項工程,在甲、乙兩地施工,其中甲地需推土機30臺,乙地需推土機26臺,公司在A、B兩地分別庫存推土機32臺和24臺,現(xiàn)從A地運一臺到甲、乙兩地的費用分別是400元和300元.從B地運一臺到甲、乙兩地的費用分別為200元和500元,設從A地運往甲地x臺推土機,運這批推土機的總費用為y元.
(1)根據題意,可將庫存地和施工地之間推土機的運輸數量列表如下:
甲地(臺) | 乙地(臺) | 合計 | |
A地 | x | A地庫存:32 (臺) | |
B地 | B地庫存:24 (臺) | ||
合計 | 甲地需求:30 (臺) | 乙地需求:26 (臺) | 總計:56 (臺) |
(2)求y與x的函數關系式;
(3)當x取何值時,能使運送這批推土機的總費用最少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形OABC是平行四邊形,以O為圓心,OA為半徑的圓交AB于D,延長AO交⊙O于E,連接CD,CE,若CE是⊙O的切線,解答下列問題:
(1)求證:CD是⊙O的切線;
(2)若BC=3,CD=4,求平行四邊形OABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學的趣味無處不在,在學習數學的過程中,小明發(fā)現(xiàn)了有規(guī)律的等式:
;
;
;
;
……
(1)從計算過程中找出規(guī)律,可知:
① ;
② =.
(2)計算:(結果用含n的式子表示)
(3)對于算式:
①計算出算式的值(結果用乘方表示);
②直接寫出結果的個位數字是幾?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了提高學生書寫漢字的能力,增強保護漢字的意識,我市舉辦了首屆“漢字聽寫大賽”,經選拔后有50名學生參加決賽,這50名學生同時聽寫50個漢字,若每正確聽寫出一個漢字得1分,根據測試成績繪制出部分頻數分布表和部分頻數分布直方圖如圖表:
組別 | 成績x分 | 頻數(人數) |
第1組 | 25≤x<30 | 4 |
第2組 | 30≤x<35 | 8 |
第3組 | 35≤x<40 | 16 |
第4組 | 40≤x<45 | a |
第5組 | 45≤x<50 | 10 |
請結合圖表完成下列各題:
(1)求表中a的值;
(2)請把頻數分布直方圖補充完整;
(3)若測試成績不低于40分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
(4)第5組10名同學中,有4名男同學,現(xiàn)將這10名同學平均分成兩組進行對抗練習,且4名男同學每組分兩人,求小宇與小強兩名男同學能分在同一組的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點.△ABC的邊BC在x軸上,A、C兩點的坐標分別為A(0,m)、C(n,0),B(﹣5,0),且,點P從B出發(fā),以每秒2個單位的速度沿射線BO勻速運動,設點P運動時間為t秒.
(1)求A、C兩點的坐標;
(2)連接PA,用含t的代數式表示△POA的面積;
(3)當P在線段BO上運動時,是否存在一點P,使△PAC是等腰三角形?若存在,請寫出滿足條件的所有P點的坐標并求t的值;若不存在,請說明理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC和△A'B'C'關于直線l對稱,下列結論:①△ABC≌△A'B'C' ;②∠BAC=∠B'A'C';③直線l不一定垂直平分線段CC';④直線BC與B'C'的交點一定在直線l上.其中正確的是________ (填序號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線與雙曲線(k>0)交于A、B兩點,點B的坐標為(﹣4,﹣2),C為雙曲線(k>0)上一點,且在第一象限內,若△AOC的面積為6.
(1)求雙曲線的解析式;
(2)求點C的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com