【題目】如圖,在四邊形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于對(duì)角線AC,垂足是E,連接BE.
(1)求證:四邊形ABCD是平行四邊形;
(2)若AB=BE=2,sin∠ACD= ,求四邊形ABCD的面積.

【答案】
(1)證明:∵AB∥CD,

∴∠ABC+∠DCB=180°,

∵∠ABC=∠ADC,

∴∠ADC+∠BCD=180°,

∴AD∥BC,

∵AB∥CD,

∴四邊形ABCD是平行四邊形


(2)解:∵sin∠ACD= ,

∴∠ACD=60°,

∵四邊形ABCD是平行四邊形,

∴AB∥CD,CD=AB=2,

∴∠BAC=∠ACD=60°,

∵AB=BE=2,

∴△ABE是等邊三角形,

∴AE=AB=2,

∵DE⊥AC,

∴∠CDE=90°﹣60°=30°,

∴CE= CD=1,

∴DE= CE= ,AC=AE+CE=3,

∴平行四邊形ABCD的面積=2△ACD的面積=ACDE=3


【解析】(1)根據(jù)平行四邊形的性質(zhì)得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根據(jù)平行線的判定得出AD∥BC,根據(jù)平行四邊形的判定推出即可;(2)證明△ABE是等邊三角形,得出AE=AB=2,由直角三角形的性質(zhì)求出CE和DE,得出AC的長(zhǎng),即可求出四邊形ABCD的面積.
【考點(diǎn)精析】利用平行四邊形的判定與性質(zhì)和解直角三角形對(duì)題目進(jìn)行判斷即可得到答案,需要熟知若一直線過(guò)平行四邊形兩對(duì)角線的交點(diǎn),則這條直線被一組對(duì)邊截下的線段以對(duì)角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E,F(xiàn),G,H分別是邊AB,BC,CD,DA的中點(diǎn).

(1)判斷四邊形EFGH的形狀,并證明你的結(jié)論;

(2)當(dāng)BD,AC滿足什么條件時(shí),四邊形EFGH是正方形.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】諸暨某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進(jìn)價(jià)為80元,銷售價(jià)為120元時(shí),每天可售出20件,為了迎接五一國(guó)際勞動(dòng)節(jié),商店決定采取適當(dāng)?shù)慕祪r(jià)措施,以擴(kuò)大銷售量,增加利潤(rùn),經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),如果每件童裝降價(jià)1元,那么平均可多售出2件.

設(shè)每件童裝降價(jià)x元時(shí),每天可銷售______件,每件盈利______元;x的代數(shù)式表示

每件童裝降價(jià)多少元時(shí),平均每天贏利1200元.

要想平均每天贏利2000元,可能嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法錯(cuò)誤的是(  。

A. 0是絕對(duì)值最小的有理數(shù) B. 如果的相反數(shù)是5,那么5

C. 若∣4∣,那么 4 D. 任何非零有理數(shù)的平方都大于0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題

四川的災(zāi)情牽動(dòng)全國(guó)人民的心,某市A、B兩個(gè)蔬菜基地得知四川C、D兩個(gè)災(zāi)民安置點(diǎn)分別急蔬菜240噸和260噸的消息后,決定調(diào)運(yùn)蔬菜支援災(zāi)區(qū)。已知A蔬菜基地有蔬菜200噸,B蔬菜基地有蔬菜300噸,現(xiàn)將這些蔬菜全部調(diào)往C、D兩個(gè)災(zāi)民安置點(diǎn)。從A地運(yùn)往C、D兩處的費(fèi)用分別為每噸20元和25元,從B地運(yùn)往C、D兩處的費(fèi)用分別為每噸15元和18元。設(shè)從B地運(yùn)往C處的蔬菜為噸。

(1)請(qǐng)?zhí)顚懴卤,并求兩個(gè)蔬菜基地調(diào)運(yùn)蔬菜的運(yùn)費(fèi)相等時(shí)的值?

C

D

總計(jì)

A

200

B

300

總計(jì)

240

260

500

(2)已知總運(yùn)費(fèi)最小的調(diào)運(yùn)費(fèi)用是9280元,請(qǐng)你提交具體的調(diào)運(yùn)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,∠C=90°,AC=BC= ,將△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)60°到△AB′C′的位置,連接C′B.
(1)請(qǐng)你在圖中把圖補(bǔ)畫完整;
(2)求C′B的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知反比例函數(shù)y1=的圖象與一次函數(shù)y2=ax+b的圖象交于點(diǎn)A(1,4)和點(diǎn)B(m,﹣2)。

(1)求這兩個(gè)函數(shù)的關(guān)系式;

(2)觀察圖象,寫出使得y1<y2成立的自變量x的取值范圍;

(3)如果點(diǎn)C與點(diǎn)A關(guān)于x軸對(duì)稱,求△ABC的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)場(chǎng)擬建一間矩形種牛飼養(yǎng)室,飼養(yǎng)室的一面靠現(xiàn)有墻(墻足夠長(zhǎng)),已知計(jì)劃中的建筑材料可建圍墻的總長(zhǎng)為為50m.設(shè)飼養(yǎng)室長(zhǎng)為x(m),占地面積為y(m2).


(1)如圖1,問(wèn)飼養(yǎng)室長(zhǎng)x為多少時(shí),占地面積y最大?
(2)如圖2,現(xiàn)要求在圖中所示位置留2m寬的門,且仍使飼養(yǎng)室的占地面積最大。小敏說(shuō):“只要飼養(yǎng)室長(zhǎng)比(1)中的長(zhǎng)多2m就行了.”

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,對(duì)角線相交于點(diǎn)于點(diǎn)于點(diǎn)F,連結(jié),則下列結(jié)論:;;圖中共有四對(duì)全等三角形其中正確結(jié)論的個(gè)數(shù)是

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

同步練習(xí)冊(cè)答案