【題目】如圖所示,銳角中,,分別是,邊上的點,,,且,、交于點,若,則的大小是( )
A.B.C.D.
【答案】B
【解析】
延長C′D交AB′于H.利用全等三角形的性質(zhì),平行線的性質(zhì),三角形的外角的性質(zhì)證明∠BFC=∠C′+∠AHC′,再求出∠C′+∠AHC′即可解決問題.
延長C′D交AB′于H.
∵△AEB≌△AEB′,
∴∠ABE=∠AB′E,
∵C′H∥EB′,
∴∠AHC′=∠AB′E,
∴∠ABE=∠AHC′,
∵△ADC≌△ADC′,
∴∠C′=∠ACD,
∵∠BFC=∠DBF+∠BDF,∠BDF=∠CAD+∠ACD,
∴∠BFC=∠AHC′+∠C′+∠DAC,
∵∠DAC=∠DAC′=∠CAB′=40°,
∴∠C′AH=120°,
∴∠C′+∠AHC′=60°,
∴∠BFC=60°+40°=100°,
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,折疊矩形ABCD,使點B落在對角線AC上的點F處,若BC=8,AB=6,則線段CE的長度是( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某籃球隊對隊員進行定點投籃測試,每人每天投籃10次,現(xiàn)對甲、乙兩名隊員在五天中進球數(shù)(單位:個)進行統(tǒng)計,結(jié)果如下:
甲 | 10 | 6 | 10 | 6 | 8 |
乙 | 7 | 9 | 7 | 8 | 9 |
經(jīng)過計算,甲進球的平均數(shù)為8,方差為3.2.
(1)求乙進球的平均數(shù)和方差;
(2)如果綜合考慮平均成績和成績穩(wěn)定性兩方面的因素,從甲、乙兩名隊員中選出一人去參加定點投籃比賽,應(yīng)選誰?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某片果園有果樹80棵,現(xiàn)準備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會減少,單棵樹的產(chǎn)量隨之降低,若該果園每棵果樹產(chǎn)果y千克,增種果樹x棵,它們之間的函數(shù)關(guān)系如圖所示.
(1)求y與x之間的函數(shù)解析式;
(2)在投入成本最低的情況下,增種果樹多少棵時,果園可以收獲果實6750千克?
(3)當增種果樹多少棵時,果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從下列算式:①;②26÷23=4;③ -12018=1;④ (-)2=3;⑤a+a=a2中隨機抽取一個,運算結(jié)果正確的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明解方程=3出現(xiàn)了錯誤,解答過程如下:
方程兩邊都乘以(x-2),得1-(1-x)=3(第一步)
去括號,得1-1+x=3(第二步)
移項,合并同類項,得x=3(第三步)
檢驗,當x=3時x-2≠0(第四步)
所以x=3是原方程的解.(第五步)
(1)小明解答過程是從第____步開始出錯的,原方程化為第一步的根據(jù)是_____.
(2)請寫出此題正確的解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥CD,AB=BC,∠B=60°,E是BC邊上一點.
(1)如圖1,若E是BC的中點,∠AED=60°,求證:CE=CD;
(2)如圖2,若∠EAD=60°,求證:△AED是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,點P為AC邊上的一點,延長BP至點D,使得AD=AP,當AD⊥AB時,過D作DE⊥AC于E,AB-BC=4,AC=8,則△ABP面積為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一面墻上有一個矩形的門洞,現(xiàn)要將它改為一個圓弧形的門洞,圓弧所在的圓外接矩形,已知矩形的高AC=2米,寬CD=米.
(1)求此圓形門洞的半徑;
(2)求要打掉墻體的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com