精英家教網 > 初中數學 > 題目詳情

【題目】某校射擊隊從甲、乙、丙、丁四人中選拔一人參加市運動會射擊比賽,在選拔比賽中,每人射擊10次,他們10次成績的平均數及方差如下表所示:

平均數/環(huán)

9.5

9.5

9.6

9.6

方差/環(huán)2

5.1

4.7

4.5

5.1

請你根據表中數據選一人參加比賽,最合適的人選是(   )

A. B. C. D.

【答案】C

【解析】

先從平均數的大小確定出人選為丙和丁,再根據方差的大小進行確定即可得答案.

,,,9.5=9.5<9.6=9.6,

丙和丁的平均成績比甲和乙的平均成績高,

應該從丙和丁中選擇一人參賽,

=5.1,=4.7,=4.5,=5.1,4.5<4.7<5.1=5.1,

∴丙的成績最穩(wěn)定,

∴最合適的人選是丙,

故選C.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖①②,的兩邊分別平行.

1)在圖①中,有什么數量關系?為什么?

2)在圖②中,有什么數量關系?為什么?

3)由(1)(2)你能得出什么結論?用一句話概括你得到的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)如圖1,直線a∥直線b,點A、D在直線a上,點B、C在直線b上,連接AB、AC、BD、DC,得ABCBDC,ABC的面積_______BDC的面積(填“>”、“=”或“<”).

2)如圖2,已知ABC,過點A有一條線段,將ABC的面積平分,且交BC于點D,則

3)如圖3,已知四邊形ABCD,請過點D作一條線段DG將四邊形ABCD面積平分.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD中,點P是CD的中點,∠BCD=60°,射線AP交BC的延長線于點E,射線BP交DE于點K,點O是線段BK的中點,作BM⊥AE于點M,作KN⊥AE于點N,連結MO、NO,以下四個結論:①△OMN是等腰三角形;②tan∠OMN= ;③BP=4PK;④PMPA=3PD2 , 其中正確的是( )

A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知中,是邊上一點,點分別是邊延長線上的點,線段的延長線和射線NF的反向延長線交于點,若.則______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,Rt△ABC放在直角坐標系內,其中∠CAB=90°,BC=5,點A、B的坐標分別是(1,0),(4,0),將△ABC沿x軸向右平移,當點C落在直線y=2x-6上時,線段BC掃過的圖形的面積為( )

A. 4 B. 8 C. 16 D. 32

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形OABC和正方形CDEF在平面直角坐標系中,點O,C,F在y軸上,點O為坐標原點,點M為OC的中點,拋物線y=ax2+b經過M,B,E三點,則 的值為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)經過點A(﹣3,0)、B(1,0)、C(﹣2,1),交y軸于點M.

(1)求拋物線的表達式;
(2)D為拋物線在第二象限部分上的一點,作DE垂直x軸于點E,交線段AM于點F,求線段DF長度的最大值,并求此時點D的坐標;
(3)拋物線上是否存在一點P,作PN垂直x軸于點N,使得以點P、A、N為頂點的三角形與△MAO相似(不包括全等)?若存在,求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在一塊直角三角板ABC中,∠C=90°,∠A=30°,BC=1,將另一個含30°角的△EDF的30°角的頂點D放在AB邊上,E,F分別在AC,BC上,當點D在AB邊上移動時,DE始終與AB垂直,若△CEF與△DEF相似,則AD=

查看答案和解析>>

同步練習冊答案