如圖,在平面直角坐標系中,矩形OABC的兩邊分別在x軸和y軸上,OA=16cm,OC=8cm,現(xiàn)有兩動點P、Q分別從O、C同時出發(fā),P在線段OA上沿OA方向以每秒2cm的速度勻速運動,Q在線段CO上沿CO方向以每秒1cm的速度勻速運動.設運動時間為t秒.
(1)用含t的式子表示△OPQ的面積S;
(2)判斷四邊形OPBQ的面積是否是一個定值?如果是,請求出這個定值;如果不是,請說明理由;
(3)當△OPQ∽△ABP時,拋物線y=x2+bx+c經過B、P兩點,求拋物線的解析式;
(4)在(3)的條件下,過線段BP上一動點M作y軸的平行線交拋物線于N,求線段MN的最大值.

【答案】分析:(1)根據速度與時間的關系分別表示出CQ、OP、OQ的長度,然后利用三角形的面積公式列列式整理即可得解;
(2)用矩形OABC的面積減去△ABP與△BCQ的面積,根據面積公式分別列式進行整理即可得解;
(3)根據相似三角形對應邊成比例列出比例式=,然后代入數(shù)據求解即可得到t值,從而得到點P的坐標;
(4)先求出直線BP的解析式,然后根據直線解析式與拋物線解析式設出點M、N的坐標,再根據兩點間的距離表示出MN的長度,根據二次函數(shù)的最值問題解答.
解答:解:(1)∵CQ=t,OP=2t,CO=8,
∴OQ=8-t,
∴S△OPQ=(8-t)×2t=-t2+8t(0<t<8);

(2)∵S四邊形OPBQ=S矩形ABCD-S△PAB-S△CBQ
=8×16-×8×(16-2t)-×16×t,
=128-64+8t-8t,
=64,
∴四邊形OPBQ的面積為一個定值,且等于64;

(3)當△OPQ∽△ABP時,=,
=
解得:t1=2,t2=8(舍去),
此時P(4,0),
∵B(16,8),

解得,
∴拋物線解析式是y=x2-x+;

(4)設直線BP的解析式為y=kx+b,
,
解得,
∴直線BP的解析式是:y=x-,
設M(m,m-)、N(m,m2-m+),
∵M在BP上運動,
∴4≤m≤16,
∴MN=m--(m2-m+)=-m2+5m-16,
∴當m=-=10時,MN有最大值是9.
點評:本題是對二次函數(shù)的綜合考查,三角形的面積求解,不規(guī)則圖形的面積表示,待定系數(shù)法求二次函數(shù)解析式,待定系數(shù)法求直線解析式以及兩點間的距離公式,二次函數(shù)的最值問題,綜合性較強,準確利用動點表示出線段的長度是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案