【題目】如圖,學(xué)校的實(shí)驗(yàn)樓對面是一幢教學(xué)樓,小敏在實(shí)驗(yàn)樓的窗口C測得教學(xué)樓頂部D的仰角為18°,教學(xué)樓底部B的俯角為20°,量得實(shí)驗(yàn)樓與教學(xué)樓之間的距離AB=30m.
(1)求∠BCD的度數(shù).
(2)求教學(xué)樓的高BD.(結(jié)果精確到0.1m,參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)
【答案】(1)38°;(2)20.4m.
【解析】
試題分析:(1)過點(diǎn)C作CE與BD垂直,根據(jù)題意確定出所求角度數(shù)即可;
(2)在直角三角形CBE中,利用銳角三角函數(shù)定義求出BE的長,在直角三角形CDE中,利用銳角三角函數(shù)定義求出DE的長,由BE+DE求出BD的長,即為教學(xué)樓的高.
試題解析:(1)過點(diǎn)C作CE⊥BD,則有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;
(2)由題意得:CE=AB=30m,在Rt△CBE中,BE=CEtan20°≈10.80m,在Rt△CDE中,DE=CDtan18°≈9.60m,∴教學(xué)樓的高BD=BE+DE=10.80+9.60≈20.4m,則教學(xué)樓的高約為20.4m.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】麗水某公司將“麗水山耕”農(nóng)副產(chǎn)品運(yùn)往杭州市場進(jìn)行銷售,記汽車行駛時(shí)為t小時(shí),平均速度為v千米/小時(shí)(汽車行駛速度不超過100千米/小時(shí)).根據(jù)經(jīng)驗(yàn),v,t的一組對應(yīng)值如下表:
(1)根據(jù)表中的數(shù)據(jù),求出平均速度v(千米/小時(shí))關(guān)于行駛時(shí)間t(小時(shí))的函數(shù)表達(dá)式;
(2)汽車上午7:30從麗水出發(fā),能否在上午00之前到達(dá)杭州市場?請說明理由;
(3)若汽車到達(dá)杭州市場的行駛時(shí)間t滿足3.5≤t≤4,求平均速度v的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線l:y=﹣ x+ 分別交x軸,y軸于A,B兩點(diǎn),點(diǎn)C在x軸負(fù)半軸上,且∠ACB=30°.
(1)求A,C兩點(diǎn)的坐標(biāo).
(2)若點(diǎn)M從點(diǎn)C出發(fā),以每秒1個(gè)單位長度的速度沿射線CB運(yùn)動(dòng),連接AM,設(shè)△ABM的面積為S,點(diǎn)M的運(yùn)動(dòng)時(shí)間為t,求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
(3)點(diǎn)P是y軸上的點(diǎn),在坐標(biāo)平面內(nèi)是否存在點(diǎn)Q,使以A,B,P,Q為頂點(diǎn)的四邊形是菱形?若存在,請直接寫出Q點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)題意,解答下列問題:
(1)如圖①,已知直線y=2x+4與x軸、y軸分別交于A、B兩點(diǎn),求線段AB的長;
(2)如圖②,類比(1)的求解過程,請你通過構(gòu)造直角三角形的方法,求出兩點(diǎn)M(3,4),N(﹣2,﹣1)之間的距離;
(3)如圖③,P1(x1 , y1),P2(x2 , y2)是平面直角坐標(biāo)系內(nèi)的兩點(diǎn),請你利用圖③構(gòu)造直角三角形,并直接寫出P1P2的長度(用含有x1 , x2 , y1 , y2的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為某城市部分街道示意圖,四邊形ABCD為正方形,點(diǎn)G在對角線BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路線為B→A→G→E,小聰行走的路線為B→A→D→E→F.若小敏行走的路程為3100m,則小聰行走的路程為 m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有一組鄰邊相等,并且它們的夾角是直角的凸四邊形叫做等腰直角四邊形.
(1)如圖1,等腰直角四邊形ABCD,AB=BC,∠ABC=90°.
①若AB=CD=1,AB∥CD,求對角線BD的長.
②若AC⊥BD,求證:AD=CD;
(2)如圖2,在矩形ABCD中,AB=5,BC=9,點(diǎn)P是對角線BD上一點(diǎn),且BP=2PD,過點(diǎn)P作直線分別交邊AD,BC于點(diǎn)E,F(xiàn),使四邊形ABFE是等腰直角四邊形,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下面四根木棒中,選一根能與長為4cm,9cm的兩根木棒首尾依次相接釘成一個(gè)三角形的是( )
A.4cm
B.5cm
C.9cm
D.13cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=4,P是CD邊上的動(dòng)點(diǎn)(P點(diǎn)不與C、D重合),過點(diǎn)P作直線與BC的延長線交于點(diǎn)E,與AD交于點(diǎn)F,且CP=CE,連接DE、BP、BF,設(shè)CP═x,△PBF的面積為S1 , △PDE的面積為S2 .
(1)求證:BP⊥DE.
(2)求S1﹣S2關(guān)于x的函數(shù)解析式,并寫出x的取值范圍.
(3)分別求當(dāng)∠PBF=30°和∠PBF=45°時(shí),S1﹣S2的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com