【題目】如圖,長方形紙片ABCD中,AB=8,將紙片折疊,使頂點B落在邊AD上的E點處,折痕的一端G點在邊BC上.
(1)如圖1,當折痕的另一端F在AB邊上且AE=4時,求AF的長;
(2)如圖2,當折痕的另一端F在AD邊上且BG=10時,
①求證:△EFG是等腰三角形;②求AF的長;
(3)如圖3,當折痕的另一端F在AD邊上,B點的對應點E到AD的距離是4,且BG=5時,求AF的長.
【答案】(1)AF=3;(2)①見解析;②AF=6;(3)AF=1
【解析】
(1)根據(jù)翻折的性質(zhì)可得BF=EF,然后用AF表示出EF,在Rt△AEF中,利用勾股定理列出方程求解即可;
(2)①根據(jù)翻折的性質(zhì)可得∠BGF=∠EGF,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠BGF=∠EFG,從而得到∠EGF=∠EFG,再根據(jù)等角對等邊證明即可;
②根據(jù)翻折的性質(zhì)可得EG=BG,HE=AB,FH=AF,然后在Rt△EFH中,利用勾股定理列式計算即可得解;
(3)設EH與AD相交于點K,過點E作MN∥CD分別交AD、BC于M、N,然后求出EM、EN,在Rt△ENG中,利用勾股定理列式求出GN,再根據(jù)△GEN和△EKM相似,利用相似三角形對應邊成比例列式求出EK、KM,再求出KH,然后根據(jù)△FKH和△EKM相似,利用相似三角形對應邊成比例列式求解即可.
(1)解:∵紙片折疊后頂點B落在邊AD上的E點處,
∴BF=EF,
∵AB=8,
∴EF=8﹣AF,
在Rt△AEF中,AE2+AF2=EF2,
即42+AF2=(8﹣AF)2,
解得AF=3;
(2)①證明:∵紙片折疊后頂點B落在邊AD上的E點處,
∴∠BGF=∠EGF,
∵長方形紙片ABCD的邊AD∥BC,
∴∠BGF=∠EFG,
∴∠EGF=∠EFG,
∴EF=EG,
∴△EFG是等腰三角形;
②解:∵紙片折疊后頂點B落在邊AD上的E點處,
∴EG=BG=10,HE=AB=8,FH=AF,
∴EF=EG=10,
在Rt△EFH中,FH==6,
∴AF=FH=6;
(3)解:如圖3,設EH與AD相交于點K,過點E作MN∥CD分別交AD、BC于M、N,
∵E到AD的距離為4,
∴EM=4,EN=8﹣4=4,
在Rt△ENG中,EG=BG=5,
∴GN==3,
∵∠GEN+∠KEM=180°﹣∠GEH=180°﹣90°=90°,
∠GEN+∠NGE=180°﹣90°=90°,
∴∠KEM=∠NGE,
又∵∠ENG=∠KME=90°,
∴△GEN∽△EKM,
∴,
即,
解得EK=,KM=,
∴KH=EH﹣EK=8﹣=,
∵∠FKH=∠EKM,∠H=∠EMK=90°,
∴△FKH∽△EKM,
∴,
即,
解得FH=1,
∴AF=FH=1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C,D是半圓O上的兩點,弧AC=弧BD,AE與弦CD的延長線垂直,垂足為E.
(1)求證:AE與半圓O相切;
(2)若DE=2,AE=,求圖中陰影部分的面積
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明家1至6月份的用水量統(tǒng)計如圖所示,關于這組數(shù)據(jù),下列說法錯誤的是( ).
A、眾數(shù)是6噸 B、平均數(shù)是5噸 C、中位數(shù)是5噸 D、方差是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店銷售A型和B型兩種電腦,其中A型電腦每臺的利潤為400元,B型電腦每臺的利潤為500元.該商店計劃再一次性購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.
(1)求y關于x的函數(shù)關系式;
(2)該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大,最大利潤是多少?
(3)實際進貨時,廠家對A型電腦出廠價下調(diào)a(0<a<200)元,且限定商店最多購進A型電腦60臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息,設計出使這100臺電腦銷售總利潤最大的進貨方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校冬季趣味運動會開設了“搶收搶種”項目,八(5)班甲、乙兩個小組都想代表班級參賽,為了選擇一個比較好的隊伍,八(5)班的班委組織了一次選拔賽,甲、乙兩組各10人的比賽成績?nèi)缦卤恚?/span>
甲組 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙組 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲組成績的中位數(shù)是 分,乙組成績的眾數(shù)是 分.
(2)計算乙組的平均成績和方差.
(3)已知甲組成績的方差是1.4,則選擇 組代表八(5)班參加學校比賽.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點(3,-2)在反比例函數(shù)的圖像上,則下列各點中,也在反比例函數(shù)圖像上的是( )
A. (3,-3) B. (-2,3) C. (1,6) D. (-2,-3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料,并解答問題.
材料:將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.
解:由分母為﹣x2+1,可設﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b則﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)
∵對應任意x,上述等式均成立,∴,∴a=2,b=1
∴==+=x2+2+這樣,分式被拆分成了一個整式x2+2與一個分式的和.
解答:
(1)將分式 拆分成一個整式與一個分式(分子為整數(shù))的和的形式.
(2)試說明的最小值為8.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30m,在A點測得D點的仰角∠EAD為45°,在B點測得D點的仰角∠CBD為60°,求這兩座建筑物的高度(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,已知△ABC三個頂點坐標分別為A(﹣4,1),B(﹣3,3),C(﹣1,2).
(1)畫出△ABC關于x軸對稱的△A1B1C1,點A,B,C的對稱點分別是點A1、B1、C1,直接寫出點A1,B1,C1的坐標:A1( ),B1( ),C1( );
(2)畫出△ABC繞原點O順時針旋轉(zhuǎn)90°后得到的△A2B2C2,連接C1C2,CC2,C1C,并直接寫出△CC1C2的面積是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com