如圖1,在四邊形ABCD中,已知AB=BC=CD,∠BAD和∠CDA均為銳角,點(diǎn)P是對(duì)角線BD上的一點(diǎn),PQ∥BA交AD于點(diǎn)Q,PS∥BC交DC于點(diǎn)S,四邊形PQRS是平行四邊形.
(1)當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),圖1變?yōu)閳D2,若∠ABD=90°,求證:△ABR≌△CRD;
(2)對(duì)于圖1,若四邊形PRDS也是平行四邊形,此時(shí),你能推出四邊形ABCD還應(yīng)滿足什么條件?
【答案】分析:(1)可先證CR⊥BD,根據(jù)等腰三角形“三線合一”的性質(zhì),求得∠BCR=∠DCR,進(jìn)而求得∠BAR=∠DCR,又有AB=CR,AR=BC=CD,可證△ABR≌△CRD;
(2)由PS∥QR,PS∥RD知,點(diǎn)R在QD上,故BC∥AD.又由AB=CD知∠A=∠CDA因?yàn)镾R∥PQ∥BA,所以∠SRD=∠A=∠CDA,從而SR=SD.由PS∥BC及BC=CD知SP=SD.而SP=DR,所以SR=SD=RD故∠CDA=60度.因此四邊形ABCD還應(yīng)滿足BC∥AD,∠CDA=60°
解答:(1)證明:∵∠ABD=90°,AB∥CR,
∴CR⊥BD.
∵BC=CD,
∴∠BCR=∠DCR.
∵四邊形ABCR是平行四邊形,
∴∠BCR=∠BAR.
∴∠BAR=∠DCR.
又∵AB=CR,AR=BC=CD,
∴△ABR≌△CRD.

(2)解:由PS∥QR,PS∥RD知,點(diǎn)R在QD上,
故BC∥AD.
又由AB=CD知∠A=∠CDA,
因?yàn)镾R∥PQ∥BA,
所以∠SRD=∠A=∠CDA,從而SR=SD.
由PS∥BC
∴△DCB∽△DSP,
∵BC=CD,
∴SP=SD.而SP=DR,
所以SR=SD=RD,
故∠CDA=60°.
因此四邊形ABCD還應(yīng)滿足BC∥AD,∠CDA=60°.
(注:若推出的條件為BC∥AD,∠BAD=60°或BC∥AD,∠BCD=120°等亦可.)
點(diǎn)評(píng):三角形全等的判定是中考的熱點(diǎn),一般以考查三角形全等的方法為主,判定兩個(gè)三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)已知:如圖1,在四邊形ABCD中,E是AD上一點(diǎn),EC∥AB,EB∥CD,若S△DEC=1,S△ABE=3,則S△BCE=
 
;若S△DEC=S1,S△ABE=S2,S△BCE=S,請(qǐng)直接寫(xiě)出S與S1、S2間的關(guān)系式:
 
;
(2)如圖2,△ABC、△DCE、△GEF都是等邊三角形,且A、D、G在同一直線上,B、C、E、F也在同一直線上,S△ABC=4,S△DCE=9,試?yán)茫?)中的結(jié)論得△GEF的面積為
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們把既有外接圓又有內(nèi)切圓的四邊形稱(chēng)為雙圓四邊形,如圖1,四邊形ABCD是雙圓四邊形,其外心為O1,內(nèi)心為O2
(1)在平行四邊形、矩形、菱形、正方形、等腰梯形中,雙圓四邊形有
 
個(gè);
(2)如圖2,在四邊形ABCD中,已知:∠B=∠D=90°,AB=AD,問(wèn):這個(gè)四邊形是否是雙圓四邊形?如果是,請(qǐng)給出證明;如果不是,請(qǐng)說(shuō)明理由;
(3)如圖3,如果雙圓四邊形ABCD的外心與內(nèi)心重合于點(diǎn)O,試判定這個(gè)四邊形的形狀,并說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•黑河)如圖1,在正方形ABCD中,點(diǎn)M、N分別在AD、CD上,若∠MBN=45°,易證MN=AM+CN
(1)如圖2,在梯形ABCD中,BC∥AD,AB=BC=CD,點(diǎn)M、N分別在AD、CD上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出猜想,并給予證明.
(2)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點(diǎn)M、N分別在DA、CD的延長(zhǎng)線上,若∠MBN=
1
2
∠ABC,試探究線段MN、AM、CN又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2013•咸寧)閱讀理解:
如圖1,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與點(diǎn)A、點(diǎn)B重合),分別連接ED,EC,可以把四邊形ABCD分成三個(gè)三角形,如果其中有兩個(gè)三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點(diǎn);如果這三個(gè)三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強(qiáng)相似點(diǎn).解決問(wèn)題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說(shuō)明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)為1)的格點(diǎn)(即每個(gè)小正方形的頂點(diǎn))上,試在圖2中畫(huà)出矩形ABCD的邊AB上的一個(gè)強(qiáng)相似點(diǎn)E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點(diǎn)D落在AB邊上的點(diǎn)E處.若點(diǎn)E恰好是四邊形ABCM的邊AB上的一個(gè)強(qiáng)相似點(diǎn),試探究AB和BC的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•東臺(tái)市二模)在四邊形ABCD中,AC=AB,DC=DB,∠CAB=60°,∠CDB=120°,E是AC上一點(diǎn),F(xiàn)是AB延長(zhǎng)線上一點(diǎn),且CE=BF.

思考驗(yàn)證:
(1)求證:DE=DF;
(2)在圖1中,若G在AB上且∠EDG=60°,試猜想CE、EG、BG之間的數(shù)量關(guān)系并證明;
歸納結(jié)論:
(3)若題中條件“∠CAB=60°且∠CDB=120°”改為∠CAB=α,∠CDB=180°-α,G在AB上,∠EDG滿足什么條件時(shí),(2)中結(jié)論仍然成立?(只寫(xiě)結(jié)果不要證明)
探究應(yīng)用:
(4)運(yùn)用(1)(2)(3)解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題:如圖2,在四邊形ABCD中,∠ABC=90°,∠CAB=∠CAD=30°,E在AB上,DE⊥AB,且∠DCE=60°,若AE=3,求BE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案