【題目】如圖,點A1的坐標(biāo)為(2,0),過點A1作x軸的垂線交過原點與x軸夾角為60°的直線l于點B1,以原點O為圓心,OB1的長為半徑畫弧交x軸正半軸于點A2;再過點A2作x軸的垂線交直線l于點B2,以原點O為圓心,以OB2的長為半徑畫弧交x軸正半軸于點A3按此做法進行下去,則點B2019的坐標(biāo)是_____.
【答案】(22019,22019)
【解析】
先根據(jù)一次函數(shù)方程式求出B1點的坐標(biāo),再根據(jù)B1點的坐標(biāo)求出A2點的坐標(biāo),得出B2的坐標(biāo),以此類推總結(jié)規(guī)律便可求出點A2019的坐標(biāo)和點B2019的坐標(biāo).
∵過點A1作x軸的垂線交過原點與x軸夾角為60°的直線l于點B1,
∴直線y=x,
∵點A1坐標(biāo)為(2,0),過點A1作x軸的垂線交直線于點B1,
則B1點的坐標(biāo)為(2,2),
以點O為圓心,OB1長為半徑畫弧x軸于點A2,則OA2=OB1,
∵OA2=,
∈點A2的坐標(biāo)為(4,0),
∴B2的坐標(biāo)為(4,4),即(22,22),
∴點A3的坐標(biāo)為(8,0),B3(8,8),
……,
以此類推便可得出點A2019的坐標(biāo)為(22019,0),點B2019的坐標(biāo)為(22019,22019);
故答案為:(22019,22019).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】北中環(huán)橋是省城太原的一座跨汾河大橋(如圖1),它由五個高度不同,跨徑也不同的拋物線型鋼拱通過吊橋,拉鎖與主梁相連,最高的鋼拱如圖2所示,此鋼拱(近似看成二次函數(shù)的圖象-拋物線)在同一豎直平面內(nèi),與拱腳所在的水平面相交于A,B兩點,拱高為78米(即最高點O到AB的距離為78米),跨徑為90米(即AB=90米),以最高點O為坐標(biāo)原點,以平行于AB的直線為軸建立平面直角坐標(biāo)系,則此拋物線鋼拱的函數(shù)表達(dá)式為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)(a,b為常數(shù),且)與反比例函數(shù)(m為常數(shù),且)的圖象交于點A(﹣2,1)、B(1,n).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連結(jié)OA、OB,求△AOB的面積;
(3)直接寫出當(dāng)時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校計劃在“陽光體育”活動課程中開設(shè)乒乓球、羽毛球、籃球、足球四個體育活動項目供學(xué)生選擇.為了估計全校學(xué)生對這四個活動項目的選擇情況,體育老師從全體學(xué)生中隨機抽取了部分學(xué)生進行調(diào)查(規(guī)定每人必須并且只能選擇其中的一個項目),并把調(diào)查結(jié)果繪制成如圖所示的不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:
(1)求參加這次調(diào)查的學(xué)生人數(shù),并補全條形統(tǒng)計圖;
(2)求扇形統(tǒng)計圖中“籃球”項目所對應(yīng)扇形的圓心角度數(shù);
(3)若該校共有600名學(xué)生,試估計該校選擇“足球”項目的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在扇形OAB中,∠AOB=90°,半徑OA=2,將扇形OAB沿過點B的直線折疊,使點O恰好落在弧AB上的點D處,折痕為BC,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】使用家用燃?xì)庠顭_同一壺水所需的燃?xì)饬?/span>(單位:)與旋鈕的旋轉(zhuǎn)角度(單位:度)()近似滿足函數(shù)關(guān)系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃?xì)庠顭_同一壺水的旋鈕角度與燃?xì)饬?/span>的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出此燃?xì)庠顭_一壺水最節(jié)省燃?xì)獾男o角度約為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知為等邊三角形,點是線段上一點(不與,重合).將線段繞點逆時針旋轉(zhuǎn)得到線段,連結(jié),.
(1)依題意補全圖1并判斷與的數(shù)量關(guān)系.
(2)過點作交延長線于點,用等式表示線段,與之間的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠DAC是△ABC的一個外角.
實驗與操作:根據(jù)要求進行尺規(guī)作圖,并在圖中標(biāo)明相應(yīng)字母(保留作圖痕跡,不寫作法)
(1)作∠DAC的平分線AM;
(2)作線段AC的垂直平分線,與AM交于點F,與BC邊交于點E,連接AE、CF
探究與猜想:若∠BAE=36°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年3月31日,以“雙城有愛,一生一世”為主題的鄭開馬拉松開賽.在這次馬拉松長跑比賽中,抽取了10名女子選手,記錄她們的成績(所用的時間)如下:
選手(序號) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
時間(分鐘) | 152 | 155 | 166 | 178 | 183 | 189 | 193 | 195 | 195 | 198 |
關(guān)于這組數(shù)據(jù),下列說法不正確的是( )
A.這組樣本數(shù)據(jù)的中位數(shù)是186
B.這組樣本數(shù)據(jù)的眾數(shù)是195
C.這組樣本數(shù)據(jù)的平均數(shù)超過170
D.這組樣本數(shù)據(jù)的方差小于30
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com