【題目】如圖,,點是內(nèi)的一定點,點,分別在,上移動,當(dāng)的周長最小時,的度數(shù)為( 。
A.B.C.D.
【答案】B
【解析】
分別作點P關(guān)于OA、OB的對稱點P1、P2,連接P1、P2,交OA于M,交OB于N,△PMN的周長最小值等于P1P2的長,然后依據(jù)等腰△OP1P2中,∠OP1P2+∠OP2P1=180°﹣2α,即可得出∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=180°﹣2α.
分別作點P關(guān)于OA、OB的對稱點P1、P2,連接P1、P2,交OA于M,交OB于N,則OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O.
根據(jù)軸對稱的性質(zhì)可得MP=P1M,PN=P2N,∴△PMN的周長的最小值=P1P2,
由軸對稱的性質(zhì)可得∠P1OP2=2∠AOB=2α,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=180°﹣2α,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=∠OP1P2+∠OP2P1=180°﹣2α.
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD交BD的延長線于E,若CE=5cm,求BD的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(x,0),B(0,y),且x,y滿足,且點A與點C關(guān)于y軸對稱.
(1)求C坐標;
(2)如圖1,點D在射線BA上,連接CD,若b=4,∠D=∠CBA,求CD長
(3)如圖2,如圖2,BC=2OC,點Q是平面內(nèi)一點,連接 QB,QC,QA,若QB=m,QC=OA,求AQ最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=8,點E是BC邊上點,連接AE,把∠B沿AE折疊,使點B落在點B′處,當(dāng)ΔCB′E為直角三角形時,則AE的長為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰ABC中,AB=AC,∠BAC=50°,∠BAC的平分線與AB的垂直平分線交于點O、點C沿EF折疊后與點O重合,則∠CEF的度數(shù)是( 。
A. 60° B. 55° C. 50° D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,是的中點,是線段延長線上一點,過點作,與線段的延長線交于點,連結(jié)、.
求證:;
若,試判斷四邊形是什么樣的四邊形,并證明你的結(jié)論;
若為的中點,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在所給的網(wǎng)格圖中,完成下列各題(用直尺畫圖,否則不給分)
(1)畫出格點△ABC關(guān)于直線DE的對稱的△A1B1C1;
(2)在DE上畫出點P,使PA+PC最;
(3)在DE上畫出點Q,使QA﹣QB最大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游泳館普通票價20元/張,暑假為了促銷,新推出兩種優(yōu)惠卡:
①金卡售價600元/張,每次憑卡不再收費.
②銀卡售價150元/張,每次憑卡另收10元.
暑假普通票正常出售,兩種優(yōu)惠卡僅限暑假使用,不限次數(shù).設(shè)游泳x次時,所需總費用為y元.
(1)分別寫出選擇銀卡、普通票消費時,y與x之間的函數(shù)關(guān)系式;
(2)在同一坐標系中,若三種消費方式對應(yīng)的函數(shù)圖象如圖所示,請求出點A、B、C的坐標;
(3)請根據(jù)函數(shù)圖象,直接寫出選擇哪種消費方式更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,F是CD上一點,E是BF上一點,連接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,則下列結(jié)論中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正確的個數(shù)有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com