【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn).
(1)求該拋物線的解析式;
(2)求該拋物線的對(duì)稱軸以及頂點(diǎn)坐標(biāo);
(3)設(shè)(1)中的拋物線上有一個(gè)動(dòng)點(diǎn)P,當(dāng)點(diǎn)P在該拋物線上滑動(dòng)到什么位置時(shí),滿足SPAB=8,并求出此時(shí)P點(diǎn)的坐標(biāo).

【答案】
(1)解:∵拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),

∴方程x2+bx+c=0的兩根為x=﹣1或x=3,

∴﹣1+3=﹣b,

﹣1×3=c,

∴b=﹣2,c=﹣3,

∴二次函數(shù)解析式是y=x2﹣2x﹣3


(2)解:∵y=﹣x2﹣2x﹣3=(x﹣1)2﹣4,

∴拋物線的對(duì)稱軸x=1,頂點(diǎn)坐標(biāo)(1,﹣4)


(3)解:設(shè)P的縱坐標(biāo)為|yP|,

∵SPAB=8,

AB|yP|=8,

∵AB=3+1=4,

∴|yP|=4,

∴yP=±4,

把yP=4代入解析式得,4=x2﹣2x﹣3,

解得,x=1±2 ,

把yP=﹣4代入解析式得,﹣4=x2﹣2x﹣3,

解得,x=1,

∴點(diǎn)P在該拋物線上滑動(dòng)到(1+2 ,4)或(1﹣2 ,4)或(1,﹣4)時(shí),滿足SPAB=8.


【解析】(1)由于拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),那么可以得到方程x2+bx+c=0的兩根為x=﹣1或x=3,然后利用根與系數(shù)即可確定b、c的值.(2)把拋物線的解析式化成頂點(diǎn)式即可;(3)根據(jù)SPAB=8,求得P的縱坐標(biāo),把縱坐標(biāo)代入拋物線的解析式即可求得P點(diǎn)的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平行四邊形ABCD中,BC=4cmEAD的中點(diǎn),F、G分別為BECD的中點(diǎn),則FG=( 。cm
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB切⊙O于點(diǎn)B,OA=2,∠OAB=30°,弦BC∥OA,劣弧 的弧長為 . (結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明的父親在相距2米的兩棵樹間拴了一根繩子,給他做了簡易的秋千,拴繩子的地方距地面高都是2.5米,繩子自然下垂呈拋物線狀,身高1米的小明距較近的那棵樹0.5米時(shí),頭部剛好接觸到繩子.
(1)以水平的地面為x軸,兩棵樹間距離的中點(diǎn)O為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,求出拋物線的解析式;
(2)求繩子的最低點(diǎn)離地面的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△OAB的頂點(diǎn)A(﹣2,4)在拋物線y=ax2上,將Rt△OAB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到△OCD,邊CD與該拋物線交于點(diǎn)P,則點(diǎn)P的坐標(biāo)為( )

A.(
B.(2,2)
C.( ,2)
D.(2,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=ax+b(a≠0)與二次函數(shù)y=ax2+bx+c(a≠0)在同一平面直角坐標(biāo)系中的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到△AB′C′,若∠BAC=90°,AB=AC= ,則圖中陰影部分的面積等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=80°,AB的垂直平分線交對(duì)角線AC于點(diǎn)F,點(diǎn)E為垂足,連接DF,則∠CDF為(
A.80°
B.70°
C.65°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°<θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明,若不成立,請(qǐng)說明理由;
(2)當(dāng)△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長BD交CF于點(diǎn)H.求證:BD⊥CF.

查看答案和解析>>

同步練習(xí)冊(cè)答案