【題目】已知:如圖,四邊形ABCD四條邊上的中點(diǎn)分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點(diǎn)四邊形).
(1)四邊形EFGH的形狀是 ,證明你的結(jié)論.
(2)當(dāng)四邊形ABCD的對(duì)角線滿足 條件時(shí),四邊形EFGH是矩形.
(3)你學(xué)過的哪種特殊四邊形的中點(diǎn)四邊形是菱形? .
【答案】(1)平行四邊形;(2)AC⊥BD;(3)矩形的中點(diǎn)四邊形是菱形
【解析】解:(1)四邊形EFGH的形狀是平行四邊形.理由如下:
如圖1,連結(jié)BD.
∵E、H分別是AB、AD中點(diǎn),
∴EH∥BD,EH=BD,
同理FG∥BD,F(xiàn)G=BD,
∴EH∥FG,EH=FG,
∴四邊形EFGH是平行四邊形;
故答案為:平行四邊形;
(2)當(dāng)四邊形ABCD的對(duì)角線滿足互相垂直的條件時(shí),四邊形EFGH是矩形.理由如下:
如圖2,連結(jié)AC、BD.
∵E、F、G、H分別為四邊形ABCD四條邊上的中點(diǎn),
∴EH∥BD,HG∥AC,
∵AC⊥BD,
∴EH⊥HG,
又∵四邊形EFGH是平行四邊形,
∴平行四邊形EFGH是矩形;
故答案為:AC⊥BD;
(3)矩形的中點(diǎn)四邊形是菱形.理由如下:
如圖3,連結(jié)AC、BD.
∵E、F、G、H分別為四邊形ABCD四條邊上的中點(diǎn),
∴EH=BD,F(xiàn)G=BD,EF=AC,GH=AC,
∵四邊形ABCD是矩形,
∴AC=BD,∴EF=FG=GH=EH,
∴四邊形EFGH是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個(gè)正n邊形的每個(gè)內(nèi)角為156°,則這個(gè)正n邊形的邊數(shù)是( )
A.13
B.14
C.15
D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】楚天汽車銷售公司5月份銷售某種型號(hào)汽車,當(dāng)月該型號(hào)汽車的進(jìn)價(jià)為30萬元/輛,若當(dāng)月銷售量超過5輛時(shí),每多售出1輛,所有售出的汽車進(jìn)價(jià)均降低0.1萬元/輛.根據(jù)市場調(diào)查,月銷售量不會(huì)突破30臺(tái).
(1)設(shè)當(dāng)月該型號(hào)汽車的銷售量為x輛(x≤30,且x為正整數(shù)),實(shí)際進(jìn)價(jià)為y萬元/輛,求y與x的函數(shù)關(guān)系式;
(2)已知該型號(hào)汽車的銷售價(jià)為32萬元/輛,公司計(jì)劃當(dāng)月銷售利潤25萬元,那么該月需售出多少輛汽車?(注:銷售利潤=銷售價(jià)﹣進(jìn)價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列從左邊到右邊的變形,是因式分解的是( 。
A. y2﹣2y+4=(y﹣2)2
B. 10x2﹣5x=5x(2x﹣1)
C. a(x+y)=ax+ay
D. t2﹣16+3t=(t+4)(t﹣4)+3t
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】玩“24點(diǎn)”游戲,規(guī)則如下:任取4個(gè)整數(shù),將這4個(gè)數(shù)(每個(gè)數(shù)只用1次)進(jìn)行“+、-、×、÷”四則運(yùn)算,使結(jié)果為24.現(xiàn)有4個(gè)整數(shù):-13、-3、-2、3,應(yīng)用上述規(guī)則,寫出一個(gè)算式____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com