已知:如圖,在四邊形ABCD中,對角線AC、BD相交于點O,∠ABC=∠BCD,AB=CD.
求證:OA=OD.

【答案】分析:首先利用AB=CD,∠ABC=∠BCD,BC邊公用,證明△ABC≌△DCB,進(jìn)而得出OB=OC,求出OA=OD.
解答:證法一:在△ABC和△DCB中,
∵AB=CD,∠ABC=∠BCD,BC邊公用,
∴△ABC≌△DCB.
∴AC=DB,
且∠ACB=∠DBC.
∴OB=OC.
∴OA=OD;

證法二:(同證法一)
∴△ABC≌△DCB.
∴∠ACB=∠DBC.
∴∠ABO=∠DCO.
又∵∠AOB=∠DOC,
∴△AOB≌△DOC.
∴OA=OD.
點評:此題主要考查了三角形全等的證明,熟練地應(yīng)用三角形全等定理是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

39、已知:如圖,在四邊形ABCD中,AB=DC,AD=BC,點E在BC上,點F在AD上,AF=CE,EF與對角線BD相交于點O.求證:O是BD的中點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、已知,如圖,在四邊形ABCD中,AB=BC=CD=DA,∠A=∠C=72°.
請設(shè)計兩種不同的分法,將四邊形ABCD分割成四個三角形,使得分割成的每個三角形都是等腰三角形.畫法要求如下:
(1)兩種分法只要有一條分割線段位置不同,就認(rèn)為是兩種不同的分法;
(2)畫圖工具不限,但要求畫出分割線段;
(3)標(biāo)出能夠說明不同分法所得三角形的內(nèi)角度數(shù),例如樣圖;
(4)不要求寫出畫法,不要求證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在四邊形ABCD中,AD∥BC,AC⊥BC,點E、F分別是邊AB、CD的中點,AF=CE.求證:AD=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在四邊形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2
(1)求證:AB=BC;
(2)當(dāng)BE⊥AD于E時,試證明:BE=AE+CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在四邊形ABCD中,AD=BC,M、N分別是AB、CD的中點,AD、BC的延長線交MN于E、F.
求證:∠DEN=∠F.

查看答案和解析>>

同步練習(xí)冊答案