【題目】某商場用13000元購進(jìn)甲、乙兩種礦泉水共400箱,礦泉水的成本價與銷售價如下表所示:

類別

成本價/(元·

銷售價/(元·

25

35

35

48

求:(1)購進(jìn)甲、乙兩種礦泉水各多少箱?

2)該商場售完這400箱礦泉水,可獲利多少元?

【答案】1)購進(jìn)甲礦泉水100箱,購進(jìn)乙礦泉水300箱(24900

【解析】

1)設(shè)購進(jìn)甲礦泉水x箱,購進(jìn)乙礦泉水y箱,根據(jù)該商場用13000元購進(jìn)甲、乙兩種礦泉水共400箱,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;

2)根據(jù)總利潤=單箱利潤×銷售數(shù)量,即可求出結(jié)論.

1)設(shè)購進(jìn)甲礦泉水x箱,購進(jìn)乙礦泉水y箱,

依題意,得:,

解得:

答:購進(jìn)甲礦泉水100箱,購進(jìn)乙礦泉水300箱.

2)(3525)×100+(4835)×3004900(元).

答:該商場售完這400箱礦泉水,可獲利4900元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DBC的垂直平分線DH上一點,DF⊥ABF,DE⊥ACAC的延長線于E,且BF=CE

1)求證:AD平分∠BAC;

2)若∠BAC=80°,求∠DCB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了測量出樓房AC的高度,從距離樓底C處米的點D(點D與樓底C在同一水平面上)出發(fā),沿斜面坡度為i=1:的斜坡DB前進(jìn)30米到達(dá)點B,在點B處測得樓頂A的仰角為53°,求樓房AC的高度(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈,計算結(jié)果用根號表示,不取近似值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,ABAC3cm,∠B30°,點DBC邊上由CB勻速運動(D不與B、C重合),勻速運動速度為1cm/s,連接AD,作∠ADE30°DE交線段AC于點E

1)在此運動過程中,∠BDA逐漸變   (填“大”或“小”);D點運動到圖1位置時,∠BDA75°,則∠BAD   

2)點D運動3s后到達(dá)圖2位置,則CD   .此時△ABD和△DCE是否全等,請說明理由;

3)在點D運動過程中,△ADE的形狀也在變化,判斷當(dāng)△ADE是等腰三角形時,∠BDA等于多少度(請直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將函數(shù)y=x22+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A1,m),B4,n)平移后的對應(yīng)點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)活動課上,小明提出這樣一個問題:∠B=∠C90°EBC的中點,DE平分∠ADC,∠CDE55°.如圖,則∠EAB的度數(shù)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮同學(xué)為了鞏固自己對平行四邊形判定知識的掌握情況設(shè)計了一個游戲,他將四邊形ABCD中的部分條件分別寫在四張大小、質(zhì)地及背面顏色都相同的卡片上,卡片如圖,他將卡片正面朝下反扣在桌面上洗勻后從中隨機(jī)抽取兩張,然后根據(jù)卡片上的兩個條件判斷四邊形ABCD是否為平行四邊形,請你用列舉法(列表法或樹狀圖法)求出他能夠判定四邊形ABCD為平行四邊形的概率.(卡片可用a、b、cd表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知是等邊三角形,上一點,繞點逆時針旋轉(zhuǎn)到的位置.

1)如圖,旋轉(zhuǎn)中心是 ,

2)如圖,如果的中點,那么經(jīng)過上述旋轉(zhuǎn)后,點 轉(zhuǎn)動了 度;

3)如果點邊上的三等分點,且的面積為,那么四邊形的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b、c是等腰三角形ABC的三條邊的長,其中a=3,如果bc是關(guān)于x的一元ニ次方程-9+m=0的兩個根,求m的値.

查看答案和解析>>

同步練習(xí)冊答案