在△ABC中,DE∥BC,E、D分別在AC、AB上,EC=2AE,則S△ADE:S四邊形DBCE的比為   
【答案】分析:先由DE∥BC,利用平行線(xiàn)分線(xiàn)段成比例定理的推論,可得△ADE∽△ABC,結(jié)合EC=2AE,可求相似比,從而可得兩個(gè)三角形的面積比,易求四邊形DBCE與△ADE的面積比.
解答:解:∵DE∥BC,
∴△ADE∽△ABC,
∴S△ADE:S△ABC=(2,
又∵EC=2AE,
=,
∴S△ADE:S△ABC=
∴S四邊形DBCE=8S△ADE,
∴S四邊形DBCE:S△ADE1:8.
故答案為:1:8.
點(diǎn)評(píng):本題利用了平行線(xiàn)分線(xiàn)段成比例定理的推論、相似三角形的判定和性質(zhì)、相似三角形的面積比等于相似比的平方、三角形的面積計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•南岸區(qū)一模)如圖,在△ABC中,DE∥AB,且BD:DC=2:3,那么S△CDE:S△ABC=
9:25
9:25

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•金山區(qū)二模)如圖,已知在△ABC中,DE是AC的垂直平分線(xiàn),交AC于點(diǎn)D,AB于點(diǎn)E,若BC=8,△BCE的周長(zhǎng)為
21,cos∠B=
513

求:(1)AB的長(zhǎng);
   (2)AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•西藏)如圖,在△ABC中,DE∥BC,DE分別與AB、AC相交于點(diǎn)D、E,若AD=4,DB=2,則DE:BC的值為
2:3
2:3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•賀州)如圖,在△ABC中,DE∥BC,EF∥AB.
(1)求證:△ADE∽△EFC;
(2)如果AB=6,AD=4,求
SADES△EFC
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,DE∥BC,且DE=
2
3
BC,BE與CD相交于點(diǎn)O,AO與BC、DE分別交于點(diǎn)M、N,CN與BE交于點(diǎn)F,連接FM,求證:FM=
1
4
AB.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹