【題目】
(1)移動1次后該點到原點的距離為 個單位長度;
(2)移動2次后該點,到原點的距離為 個單位長度;
(3)移動3次后該點到原點的距離為 個單位長度;
(4)試問移動n次后該點到原點的距離為多少個單位長度?
【答案】1,2,4,
【解析】試題分析:根據(jù)數(shù)軸上點的坐標(biāo)變化和平移規(guī)律(左減右加),分別求出點所對應(yīng)的數(shù),進而求出點到原點的距離;然后對奇數(shù)項、偶數(shù)項分別探究,找出其中的規(guī)律(相鄰兩數(shù)都相差3),寫出表達(dá)式就可解決問題.
解:由題意可得:移動1次后該點對應(yīng)的數(shù)為0+1=1,到原點的距離為1;
移動2次后該點對應(yīng)的數(shù)為1﹣3=﹣2,到原點的距離為2;
移動3次后該點對應(yīng)的數(shù)為﹣2+6=4,到原點的距離為4;
∴移動奇數(shù)次后該點到原點的距離為;
移動偶數(shù)次后該點到原點的距離為.
故答案為1,2,4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作探究:已知在紙面上有一數(shù)軸(如圖所示).
操作一:
(1)折疊紙面,使1表示的點與-1表示的點重合,則-3表示的點與________表示的點重合;
操作二:
(2)折疊紙面,使-1表示的點與3表示的點重合,回答以下問題:
①5表示的點與數(shù)________表示的點重合;
②若數(shù)軸上A、B兩點之間距離為11(A在B的左側(cè)),且A、B兩點經(jīng)折疊后重合,求A、B兩點表示的數(shù)是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知M,N都為數(shù)軸上的點,當(dāng)M,N分別表示下列各數(shù)時:
①+3和+6;②-3和+6;③3和-6;④-3和-6.
(1)請你分別求點M,N之間的距離.
(2)根據(jù)(1)的求解過程,你能從中得出求數(shù)軸上任意兩點間的距離的規(guī)律嗎?試試看.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一種“二十四點”的游戲,其游戲規(guī)則是這樣的:任取四個1~13之間的自然數(shù),將這四個數(shù)(每個數(shù)只用一次)進行加減乘除四則運算,使其結(jié)果等于24,例如對1,2,3,4可作如下運算:(1+2+3)×4=24[注意上述運算與4×(2+3+1)應(yīng)視為相同方法的運算].
現(xiàn)有四個有理數(shù)3,4,-6,10,運用上述規(guī)則寫出三種不同方法的運算,使其結(jié)果等于24,運算式如下:(1)________;(2)________;(3)________.另有四個數(shù)3,-5,7,-13,可通過運算式________,使其結(jié)果等于24.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E為□ABCD的邊BC上一點,線段AE的垂直平分線恰好經(jīng)過點D且交AB于點F,△BEF和△CDE的周長分別為8和13,則□ABCD的周長為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校要求八年級同學(xué)在課外活動中,必須在五項球類(籃球、足球、排球、羽毛球、乒乓球)活動中任選一項(只能選一項)參加訓(xùn)練,為了了解八年級學(xué)生參加球類活動的整體情況,現(xiàn)以八年級2班作為樣本,對該班學(xué)生參加球類活動的情況進行統(tǒng)計,并繪制了如圖所示的不完整統(tǒng)計表和扇形統(tǒng)計圖:
根據(jù)圖中提供的信息,解答下列問題:
(1)a= ,b= ;
(2)該校八年級學(xué)生共有600人,則該年級參加足球活動的人數(shù)約 人;
(3)該班參加乒乓球活動的5位同學(xué)中,有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,A、C、F、D在同一直線上,AF=DC,AB∥DE,AB=DE.
求證:(1) △ABC≌△DEF;
(2)BC∥EF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com