【題目】已知圓O的半徑為3cm,點P是直線l上的一點,且OP=3cm,則直線l與圓O的位置關(guān)系為( 。
A. 相切 B. 相交 C. 相離 D. 不能確定
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的對角線相交于點O,點M,N分別是邊BC,CD上的動點(不與點B,C,D重合),AM,AN分別交BD于點E,F(xiàn),且∠MAN始終保持45°不變.
(1)求證:=;
(2)求證:AF⊥FM;
(3)請?zhí)剿鳎涸凇螹AN的旋轉(zhuǎn)過程中,當∠BAM等于多少度時,∠FMN=∠BAM?寫出你的探索結(jié)論,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點F,交BC的延長線于點E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)如圖1,在△ABC中,∠ACB為銳角,點D為射線BC上一點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF.(提示:正方形的四條邊都相等,四個角都是直角)
(1)如果AB=AC,∠BAC=90°,
①當點D在線段BC上時(與點B不重合),如圖2,線段CF、BD所在直線的位置關(guān)系為______,線段CF、BD的數(shù)量關(guān)系為______;
②當點D在線段BC的延長線上時,如圖3,①中的結(jié)論是否仍然成立,并說明理由;
(2)如果AB≠AC,∠BAC是銳角,點D在線段BC上,當∠ACB滿足 條件時,CF⊥BC(點C、F不重合),并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com