【題目】如圖,在△ABC中,∠ACB=90°,∠B=4∠BAC.延長BC到點(diǎn)D,使CD=CB,連接AD,過點(diǎn)D作DE⊥AB于點(diǎn)E,交AC于點(diǎn)F.
(1)依題意補(bǔ)全圖形;
(2)求證:∠B=2∠BAD;
(3)用等式表示線段EA,EB和DB之間的數(shù)量關(guān)系,并證明.
【答案】(1)見解析;(2)見解析;(3)EA=EB+DB,見解析.
【解析】
(1)根據(jù)要求作圖即可;
(2)由∠ACB=90°,CD=CB知AD=AB.據(jù)此得∠BAD=2∠BAC.結(jié)合∠B=4∠BAC可得答案;
(3)在EA上截取EG=EB,連接DG.由DE⊥AB知DG=DB.從而得∠DGB=∠B.結(jié)合∠B=2∠BAD知∠DGB=2∠BAD.由∠DGB=∠BAD+∠ADG知∠BAD=∠ADG.從而得GA=GD、GA=DB.繼而可得答案.
(1)補(bǔ)全圖形如圖:
(2)證明:∵∠ACB=90°,CD=CB,
∴AD=AB.
∴∠BAD=2∠BAC.
∵∠B=4∠BAC,
∴∠B=2∠BAD.
(3)EA=EB+DB,
證明:在EA上截取EG=EB,連接DG.
∵DE⊥AB,
∴DG=DB.
∴∠DGB=∠B.
∵∠B=2∠BAD,
∴∠DGB=2∠BAD.
∵∠DGB=∠BAD+∠ADG,
∴∠BAD=∠ADG.
∴GA=GD.
∴GA=DB.
∴EA=EG+AG=EB+DB.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一種折疊門,由上下軌道和兩扇長寬相等的活頁門組成,整個活頁門的右軸固定在門框
上,通過推動左側(cè)活頁門開關(guān);圖2是其俯視圖簡化示意圖,已知軌道 ,兩扇活頁門的寬 ,點(diǎn)固定,當(dāng)點(diǎn)在上左右運(yùn)動時,與的長度不變(所有結(jié)果保留小數(shù)點(diǎn)后一位).
(1)若,求的長;
(2)當(dāng)點(diǎn)從點(diǎn)向右運(yùn)動60時,求點(diǎn)在此過程中運(yùn)動的路徑長.
(參考數(shù)據(jù):sin50°≈0.77, cos50°≈0.64, tan50°≈1.19, π取3.14)
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為增強(qiáng)學(xué)生體質(zhì),各學(xué)校普遍開展了陽光體育活動,某校為了解全校1000名學(xué)生每周課外體育活動時間的情況,隨機(jī)調(diào)查了其中的50名學(xué)生,對這50名學(xué)生每周課外體育活動時間x(單位:小時)進(jìn)行了統(tǒng)計.根據(jù)所得數(shù)據(jù)繪制了一幅不完整的統(tǒng)計圖,并知道每周課外體育活動時間在6≤x<8小時的學(xué)生人數(shù)占24%.根據(jù)以上信息及統(tǒng)計圖解答下列問題:
(1)本次調(diào)查屬于 調(diào)查,樣本容量是 ;
(2)請補(bǔ)全頻數(shù)分布直方圖中空缺的部分;
(3)求這50名學(xué)生每周課外體育活動時間的平均數(shù);
(4)估計全校學(xué)生每周課外體育活動時間不少于6小時的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點(diǎn)C,與AB的延長線交于D.
(1)求證:△ADC∽△CDB;
(2)若AC=2,AB=CD,求⊙O半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O內(nèi)接三角形,∠ACB=45°,∠AOC=150°,過點(diǎn)C作⊙O切線交AB延長線于點(diǎn)D.
(1)求證:CD=CB;(2)如果⊙O的半徑為,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為3cm,動點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度,沿A→B→C的方向運(yùn)動,到達(dá)點(diǎn)C時停止,設(shè)運(yùn)動時間為x(s),y=PC2,則y關(guān)于x的函數(shù)的圖像大致為 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作圓O,分別交BC于點(diǎn)D,交CA的延長線于點(diǎn)E,過點(diǎn)D作DH⊥AC于點(diǎn)H,連接DE交線段OA于點(diǎn)F.
(1)求證:DH是圓O的切線;
(2)若A為EH的中點(diǎn),求的值;
(3)若EA=EF=1,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一幅長60 cm、寬40 cm的長方形風(fēng)景畫的四周鑲一條金色紙邊,制成一幅長方形掛圖,如圖.如果要使整個掛圖的面積是2816 cm2,設(shè)金色紙邊的寬為x cm,那么x滿足的方程是( )
A. (60+2x)(40+2x)=2816
B. (60+x)(40+x)=2816
C. (60+2x)(40+x)=2816
D. (60+x)(40+2x)=2816
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程:
(1)(x﹣2)2=16
(2)x2﹣4x﹣3=0 (配方法)
(3)(x﹣1)(x + 2)= 2(x + 2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com