【題目】某種樂器有10個孔,依次記作第1孔,第2孔,……,第10孔,演奏時,第n孔與其音色的動聽指數(shù)D之間滿足關(guān)系式,該樂器的最低動聽指數(shù)為4k+106,求常數(shù)k的取值范圍。

【答案】.

【解析】

首先表示出二次函數(shù)的對稱軸,再利用對稱軸的取值范圍當(dāng)≤1,當(dāng)≥10,以及當(dāng)110,分別得出k的取值范圍進而得出答案.

拋物線D=n2+kn+90的對稱軸為n

1)當(dāng)≤1k≥-2時,有n=1D=4k+106,

12+k+90=4k+106,

解得:k=-5(不合題意),

2)當(dāng)≥10,即k≤-20時,有n=10D=4k+106,

102+10k+90=4k+106,

解得:k=-14(不合題意),

3)當(dāng)110,即-20k-2時,n在取值范圍內(nèi),

D有最低動聽指數(shù),且為4k+106,

+90≥4k+106

化簡得(k+7)(k+9≤0

解得-9≤k≤-7

綜上所述,k的取值范圍是-9≤k≤-7

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)一種產(chǎn)品,當(dāng)生產(chǎn)數(shù)量至少為20噸,但不超過60噸時,每噸的成本(萬元/噸)與生產(chǎn)數(shù)量(噸)之間是一次函數(shù)關(guān)系,其圖像如圖所示.

1)求出關(guān)于的函數(shù)解析式;

2)如果每噸的成本是4.8萬元,求該產(chǎn)品的生產(chǎn)數(shù)量;

3)當(dāng)生產(chǎn)這種產(chǎn)品的總成本是200萬元時,求該產(chǎn)品的生產(chǎn)數(shù)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)yx24的圖象與x軸交于點A、B(點A位于點B的左側(cè)),C為頂點.一次函數(shù)ymx+2的圖象經(jīng)過點A,與y軸交于點D

1)求直線AD的函數(shù)表達(dá)式;

2)平移該拋物線得到一條新拋物線,設(shè)新拋物線的頂點為C.若新拋物線的頂點和原拋物線的頂點的連線CC平行于直線AD,且當(dāng)1≤x≤3時,新拋物線對應(yīng)的函數(shù)值有最小值為﹣1,求新拋物線對應(yīng)的函數(shù)表達(dá)式;

3)如圖,連接ACBC,在坐標(biāo)平面內(nèi),直接寫出使得ACDEBC相似(其中點A與點E是對應(yīng)點)的點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線EF與⊙O相切于點C,點A為⊙O上異于點C的一動點,⊙O的半徑為4,ABEF于點B,設(shè)ACF=α(0°<α<180°).

1)若α=,求證:四邊形OCBA為正方形;

2)若AC―AB=1,求AC的長;

3)當(dāng)AC―AB取最大值時,求α的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊△ABC邊長為1,D是△ABC外一點且∠BDC=120°,BD=CD,∠MDN=60°求△AMN的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在∠MON的邊ON上,ABOMBAE=OB,DEONE,AD=AO,DCOMC

1)求證:四邊形ABCD是矩形;

2)若DE=3OE=9,求ABAD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表顯示了同學(xué)們用計算機模擬隨機投針實驗的某次實驗的結(jié)果.

投針次數(shù)n

1000

2000

3000

4000

5000

10000

20000

針與直線相交的次數(shù)m

454

970

1430

1912

2386

4769

9548

針與直線相交的頻率p

0.454

0.485

0.4767

0.478

0.4772

0.4769

0.4774

下面有三個推斷:

①投擲1000次時,針與直線相交的次數(shù)是454,針與直線相交的概率是0.454;

②隨著實驗次數(shù)的增加,針與直線相交的頻率總在0.477附近,顯示出一定的穩(wěn)定性,可以估計針與直線相交的概率是0.477

③若再次用計算機模擬此實驗,則當(dāng)投擲次數(shù)為10000時,針與直線相交的頻率一定是0.4769

其中合理的推斷的序號是:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的對角線ACBD相交于點O,∠ACB的平分線分別交AB、BD于點M、N,若AD4,則線段AM的長為(  )

A. 2B. 2C. 4D. 84

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+3的圖象經(jīng)過A(﹣1,0)、C3,0)、并且與y軸相交于點B,點P是直線BC上方的拋物線上的一動點,PQy軸交直線BC于點Q

1)求此二次函數(shù)的表達(dá)式;

2)求線段PQ的最大值;

3)在拋物線的對稱軸上,是否存在點M,使△MAB為等腰三角形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案