【題目】如圖,三個(gè)半圓依次相外切,它們的圓心都在x軸上,并與直線y= x相切.設(shè)三個(gè)半圓的半徑依次為r1、r2、r3 , 則當(dāng)r1=1時(shí),r3= .
【答案】9
【解析】解:由三個(gè)半圓依次與直線y=vx相切并且圓心都在x軸上, ∴y= x傾斜角是30°,
∴得,OO1=2r1 , 002=2r2=OO1+r1+r2=3r1+r2 , 003=2r3 ,
∴2r2=3r1+r2 ,
∴r2=3r1 ,
∵r1=1,
∴OO1=2,002=2r2=6r1=6,003=18,
∴r3=9.
所以答案是:9.
【考點(diǎn)精析】利用一次函數(shù)的性質(zhì)和相切兩圓的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時(shí),y隨x的增大而增大(2)當(dāng)k<0時(shí),y隨x的增大而減;如果兩圓相切,那么切點(diǎn)一定在連心線上,它們是軸對(duì)稱圖形,對(duì)稱軸是兩圓的連心線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠BAC=90°,AB<AC,M是BC邊的中點(diǎn),MN⊥BC交AC于點(diǎn)N.動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿射線BA以每秒 厘米的速度運(yùn)動(dòng).同時(shí),動(dòng)點(diǎn)Q從點(diǎn)N出發(fā)沿射線NC運(yùn)動(dòng),且始終保持MQ丄MP.設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)△PBM與△QNM相似嗎?以圖1為例說(shuō)明理由;
(2)若∠ABC=60°,AB=4 厘米. ①求動(dòng)點(diǎn)Q的運(yùn)動(dòng)速度;
②設(shè)△APQ的面積為S(平方厘米),求S與t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰梯形MNPQ的上底長(zhǎng)為2,腰長(zhǎng)為3,一個(gè)底角為60°.正方形ABCD的邊長(zhǎng)為1,它的一邊AD在MN上,且頂點(diǎn)A與M重合.現(xiàn)將正方形ABCD在梯形的外面沿邊MN、NP、PQ進(jìn)行翻滾,翻滾到有一個(gè)頂點(diǎn)與Q重合即停止?jié)L動(dòng).
(1)請(qǐng)?jiān)谒o的圖中,用尺規(guī)畫出點(diǎn)A在正方形整個(gè)翻滾過(guò)程中所經(jīng)過(guò)的路線圖;
(2)求正方形在整個(gè)翻滾過(guò)程中點(diǎn)A所經(jīng)過(guò)的路線與梯形MNPQ的三邊MN、NP、PQ所圍成圖形的面積S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,巳知A點(diǎn)坐標(biāo)為(5,0),直線y=x+b(b>0)與y軸交于點(diǎn)B,連接AB,∠α=75°,則b的值為( )
A.3
B.
C.4
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明在大樓30米高(即PH=30米)的窗口P處進(jìn)行觀測(cè),測(cè)得山坡上A處的俯角為15°,山腳B處的俯角為60°,巳知該山坡的坡度i(即tan∠ABC)為1: ,點(diǎn)P,H,B,C,A在同一個(gè)平面上,點(diǎn)H、B、C在同一條直線上,且PH丄HC.
(1)山坡坡角(即∠ABC)的度數(shù)等于度;
(2)求A、B兩點(diǎn)間的距離(結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.732).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l經(jīng)過(guò)點(diǎn)A(1,0),與雙曲線y= (x>0)交于點(diǎn)B(2,1).過(guò)點(diǎn)P(p,p﹣1)(p>1)作x軸的平行線分別交雙曲線y= (x>0)和y=﹣ (x<0)于點(diǎn)M、N.
(1)求m的值和直線l的解析式;
(2)若點(diǎn)P在直線y=2上,求證:△PMB∽△PNA;
(3)是否存在實(shí)數(shù)p,使得S△AMN=4S△AMP?若存在,請(qǐng)求出所有滿足條件的p的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E、F分別是正方形ABCD的邊BC、CD上的點(diǎn),BE=CF,連接AE、BF.將△ABE繞正方形的中心按逆時(shí)針?lè)较蛐D(zhuǎn)到△BCF,旋轉(zhuǎn)角為α( 0°<α<180°),則∠α= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y= x﹣3與反比例函數(shù) 的圖象相交于點(diǎn)A(4,n),與 軸相交于點(diǎn)B.
(1)填空:n的值為 , k的值為;
(2)以AB為邊作菱形ABCD,使點(diǎn)C在 軸正半軸上,點(diǎn)D在第一象限,求點(diǎn)D的坐標(biāo);
(3)考察反比函數(shù) 的圖象,當(dāng) 時(shí),請(qǐng)直接寫出自變量 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,BC=5cm,將△ABC沿BC方向平移至△A′B′C′的對(duì)應(yīng)位置時(shí),A′B′恰好經(jīng)過(guò)AC的中點(diǎn)O,則△ABC平移的距離為cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com