某花木公司在20天內(nèi)銷售一批馬蹄蓮.其中,該公司的鮮花批發(fā)部日銷售量y1(萬朵)與時間x(x為整數(shù),單位:天)部分對應(yīng)值如下表所示.
時間x(天)
0
4
8
12
16
20
銷量y1(萬朵)
0
16
24
24
16
0
另一部分鮮花在淘寶網(wǎng)銷售,網(wǎng)上銷售日銷售量y2(萬朵)與時間x(x為整數(shù),單位:天) 關(guān)系如下圖所示.

(1)請你從所學(xué)過的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y1與x的變化規(guī)律,寫出y1與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)觀察馬蹄蓮網(wǎng)上銷售量y2與時間x的變化規(guī)律,請你設(shè)想商家采用了何種銷售策略使得銷售量發(fā)生了變化,并寫出銷售量y2與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)設(shè)該花木公司日銷售總量為y萬朵,寫出y與時間x的函數(shù)關(guān)系式,并判斷第幾天日銷售總量y最大,并求出此時最大值.
(1)(0≤x≤20);(2)銷售8天后,該花木公司采用了降價促銷(或廣告宣傳)的方法吸引了淘寶買家的注意力,日銷量逐漸增加.;(3)第12天,日銷售總量最大,最大值為32萬朵.

試題分析:(1)由圖表數(shù)據(jù)觀察可知y1與x之間是二次函數(shù)關(guān)系,設(shè)將(4,16)代入即可求得結(jié)果;
(2)仔細(xì)分析圖象特征結(jié)合待定系數(shù)法求函數(shù)關(guān)系式進(jìn)行求解即可;
(3)先求出y關(guān)于x的二次函數(shù),再根據(jù)二次函數(shù)的性質(zhì)求解即可.
(1)由圖表數(shù)據(jù)觀察可知y1與x之間是二次函數(shù)關(guān)系,
設(shè)將(4,16)代入得:
∴y1與x函數(shù)關(guān)系式為(0≤x≤20);
(2)銷售8天后,該花木公司采用了降價促銷(或廣告宣傳)的方法吸引了淘寶買家的注意力,日銷量逐漸增加,
(3)當(dāng)0≤x≤8時,
∵拋物線開口向下,x的取值范圍在對稱軸左側(cè),y隨x的增大而增大,
∴當(dāng)x=8時y有最大值為28
當(dāng)8<x≤20時,
∵拋物線開口向下,頂點(diǎn)在x的取值范圍內(nèi)
∴當(dāng)x=12時y有最大值為32
∴該花木公司銷售第12天,日銷售總量最大,最大值為32萬朵.
點(diǎn)評:此類問題綜合性強(qiáng),難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一拋物線經(jīng)過點(diǎn)A、B、C,點(diǎn) A(?2,0),點(diǎn)B(0,4),點(diǎn)C(4,0),該拋物線的頂點(diǎn)為D.

(1)求該拋物線的解析式及頂點(diǎn)D坐標(biāo);
(2)如圖,若P為線段CD上的一個動點(diǎn),過點(diǎn)P作PM⊥x軸于點(diǎn)M,求四邊形PMAB的面積的最大值和此時點(diǎn)P的坐標(biāo);
(3)過拋物線頂點(diǎn)D,作DE⊥x軸于E點(diǎn),F(xiàn)(m,0)是x軸上一動點(diǎn),若以BF為直徑的圓與線段DE有公共點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某隧道橫截面的上下輪廓線分別由拋物線對稱的一部分和矩形的一部分構(gòu)成,最大高度為6米,底部寬度為12米. 現(xiàn)以O(shè)點(diǎn)為原點(diǎn),OM所在直線為x軸建立直角坐標(biāo)系.

(1) 直接寫出點(diǎn)M及拋物線頂點(diǎn)P的坐標(biāo);
(2) 求出這條拋物線的函數(shù)解析式;
(3) 若要搭建一個矩形“支撐架”AD- DC- CB,使C、D點(diǎn)在拋物線上,A、B點(diǎn)在地面OM上,則這個“支撐架”總長的最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊分別在x軸和y軸上,OA="16" cm,OC=8cm,現(xiàn)有兩動點(diǎn)P、Q分別從O、C同時出發(fā),P在線段OA上沿OA方向以每秒2cm的速度勻速運(yùn)動,Q在線段CO上沿CO方向以每秒1 cm的速度勻速運(yùn)動.設(shè)運(yùn)動時間為t秒.

(1)用含t的式子表示△OPQ的面積S;
(2)判斷四邊形OPBQ的面積是否是一個定值,如果是,請求出這個定值;如果不是,請說明理由;
(3)當(dāng)△OPQ∽△ABP時,拋物線y=x2+bx+c經(jīng)過B、P兩點(diǎn),求拋物線的解析式;
(4)在(3)的條件下,過線段BP上一動點(diǎn)M作軸的平行線交拋物線于N,求線段MN的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

大潤發(fā)超市進(jìn)了一批成本為8元/個的文具盒. 調(diào)查發(fā)現(xiàn):這種文具盒每個星期的銷售量y(個)與它的定價x(元/個)的關(guān)系如圖所示:

(1)求這種文具盒每個星期的銷售量y(個)與它的定價x(元/個)之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍);
(2)每個文具盒的定價是多少元時,超市每星期銷售這種文具盒(不考慮其他因素)可獲得的利潤為1200元?
(3)若該超市每星期銷售這種文具盒的銷售量不少于115個,且單件利潤不低于4元(x為整數(shù)),當(dāng)每個文具盒定價多少元時,超市每星期利潤最高?最高利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如果拋物線的開口方向向下,那么a的取值范圍是      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

對于任意實數(shù)m、n,定義m﹡n=m-3n,則函數(shù),當(dāng)0<x<3時,y的范圍為(    ).
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)與一次函數(shù)的圖象交于,則能使成立的的取值范圍是
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:直線交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)C為x軸上一點(diǎn),AC=1,且OC<OA.拋物線經(jīng)過點(diǎn)A、B、C.

(1)求該拋物線的表達(dá)式;
(2)點(diǎn)D的坐標(biāo)為(-3,0),點(diǎn)P為線段AB上一點(diǎn),當(dāng)銳角∠PDO的正切值為時,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,該拋物線上的一點(diǎn)E在x軸下方,當(dāng)△ADE的面積等于四邊形APCE的面積時,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案