【題目】在平面直角坐標(biāo)系中,點(diǎn)A(-2,3)關(guān)于y軸的對(duì)稱點(diǎn)為點(diǎn)B,連接AB,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)B,過(guò)點(diǎn)B作BC⊥x軸于點(diǎn)C,點(diǎn)P是該反比例函數(shù)圖象上任意一點(diǎn).
(1)求k的值;
(2)若△ABP的面積等于2,求點(diǎn)P坐標(biāo).
【答案】(1)k=6;(2)P點(diǎn)坐標(biāo)為(,4)或(3,2).
【解析】
(1)利用關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)特征得到點(diǎn)B(2,3),然后把B點(diǎn)坐標(biāo)代入y=可得到k的值;
(2)由(1)得到反比例的函數(shù)解析式為y=,設(shè)P(t,),利用三角形面積公式得到4|3-|=2,然后解方程求出t即可得到P點(diǎn)坐標(biāo).
解:(1)∵點(diǎn)A(-2,3)關(guān)于y軸的對(duì)稱點(diǎn)為點(diǎn)B,
∴點(diǎn)B(2,3),
把B(2,3)代入y=得k=2×3=6;
(2)反比例的函數(shù)解析式為y=
設(shè)P(t,),
∵AB∥x軸,
∴S△ABP=4|3-|=2,
解得t=3或t=,
∴P點(diǎn)坐標(biāo)為(,4)或(3,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+b與雙曲線 交于A、B兩點(diǎn),連接OA、OB,AM⊥y軸于點(diǎn)M,BN⊥x軸于點(diǎn)N,有以下結(jié)論:①S△AOM=S△BON;②OA=OB;③五邊形MABNO的面積;④若∠AOB=45°,則S△AOB=2k,⑤當(dāng)AB= 時(shí),ON﹣BN=1;其中結(jié)論正確的個(gè)數(shù)有( 。
A. 5個(gè)B. 4個(gè)C. 3個(gè)D. 2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形中,,是邊的中點(diǎn),點(diǎn)是正方形內(nèi)一動(dòng)點(diǎn),,連接,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得,連接,.則線段長(zhǎng)的最小值( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為8,是的中點(diǎn),是邊上的動(dòng)點(diǎn),連結(jié),以點(diǎn)為圓心,長(zhǎng)為半徑作.
(1)當(dāng)________時(shí),;
(2)當(dāng)與正方形的邊相切時(shí),求的長(zhǎng);
(3)設(shè)的半徑為,請(qǐng)直接寫出正方形中恰好有兩個(gè)頂點(diǎn)在圓內(nèi)的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在 中,,, ,四邊形PDEF是矩形,, .矩形PDEF從點(diǎn)B出發(fā),沿射線BC以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)P出發(fā),沿折線P-D-E以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)點(diǎn)E時(shí),點(diǎn)Q與矩形PDEF同時(shí)停止運(yùn)動(dòng),連接QC,設(shè)點(diǎn)Q的運(yùn)動(dòng)時(shí)間為t秒( ).
(1)求線段PC的長(zhǎng)(用含t的代數(shù)式表示);
(2)當(dāng)點(diǎn)Q落在AB邊上時(shí),求t的值;
(3)設(shè) 的面積為S,求S與t之間的函數(shù)關(guān)系式;
(4)當(dāng)四邊形PDEF與 重疊部分圖形為五邊形時(shí),直接寫出使為直角三角形時(shí)t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AD∥BC,∠A=90°,AB=AD=8cm,CD=10cm,點(diǎn)P從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為1cm/s;同時(shí),點(diǎn)Q從點(diǎn)D出發(fā),沿DC方向勻速運(yùn)動(dòng),速度為lcm/s.連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<8).解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),PQ∥AD?
(2)設(shè)四邊形APQD的面積為y(cm2),求y與t的函數(shù)關(guān)系式;
(3)是否存在某一時(shí)刻t,使S四邊形APQO:S四邊形BCQP=17:27?若存在,求出t的值,并求此時(shí)PQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作平行四邊形ABDE,連接AD,EC.
(1)求證:AD=CE;
(2)當(dāng)點(diǎn)D在什么位置時(shí),四邊形ADCE是矩形,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖①表示一個(gè)時(shí)鐘的鐘面垂直固定于水平桌面上,其中分針上有一點(diǎn)A,當(dāng)鐘面顯示3點(diǎn)30分時(shí),分針垂直于桌面,A點(diǎn)距桌面的高度為10cm.圖②表示當(dāng)鐘面顯示3點(diǎn)45分時(shí),A點(diǎn)距桌面的高度為16cm,若鐘面顯示3點(diǎn)55分時(shí),A點(diǎn)距桌面的高度為____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com