【題目】如圖,已知△ABC是等邊三角形,D為AC邊上的一點,DG∥AB,延長AB到E,使BE=GD,連接DE交BC于F.
(1)求證:GF=BF;
(2)若△ABC的邊長為a,BE的長為b,且a,b滿足(a﹣7)2+(b﹣3)2=0,求BF的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABE≌△ACD.
(1)如果BE=6,DE=2,求BC的長;
(2)如果∠BAC=75°,∠BAD=30°,求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=4cm,BC=8cm,動點P從點A出發(fā),以1cm/s的速度沿AB向點B運動,動點Q從點B出發(fā),以2cm/s秒的速度沿BC向點C運動.P、Q分別從A、B同時出發(fā),設(shè)運動時間為t秒.(如圖1)
(1)用含t的代數(shù)式表示下列線段長度:
①PB=__________cm,②QB=_____cm,③CQ=_________cm.
(2)當(dāng)△PBQ的面積等于3時,求t的值.
(3) (如圖2),若E為邊CD中點,連結(jié)EQ、AQ.當(dāng)以A、B、Q為頂點的三角形與△EQC相似時,直接寫出滿足條件的t的所有值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在平面直角坐標(biāo)系中,點O坐標(biāo)原點,直線l分別交x軸、y軸于A,B兩點,OA<OB,且OA、OB的長分別是一元二次方程的兩根.
(1)求直線AB的函數(shù)表達(dá)式;
(2)點P是y軸上的點,點Q第一象限內(nèi)的點.若以A、B、P、Q為頂點的四邊形是菱形,請直接寫出Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC三個頂點的坐標(biāo)為:A(﹣3,2),B(﹣4,﹣3)C(﹣1,﹣1)
(1)若△A1B1C1與△ABC關(guān)于y軸對稱,請寫出點A1,B1,C1的坐標(biāo)(直接寫答案):A1 ;B1, ;C1 ;
(2)△ABC的面積為 ;
(3)在y軸上畫出點P,使PB+PC最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD的邊長為4,把三角板的直角頂點放置BC中點E處,三角板繞點E旋轉(zhuǎn),三角板的兩邊分別交邊AB、CD于點G、F.
(1)求證:△GBE∽△GEF.
(2)設(shè)AG=x,GF=y,求Y關(guān)于X的函數(shù)表達(dá)式,并寫出自變量取值范圍.
(3)如圖2,連接AC交GF于點Q,交EF于點P.當(dāng)△AGQ與△CEP相似,求線段AG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的頂點A,B在x軸上,且關(guān)于y軸對稱,反比例函數(shù)y=(x>0)的圖象經(jīng)過點C,反比例函數(shù)y=(x<0)的圖象分別與AD,CD交于點E,F(xiàn),若S△BEF=7,k1+3k2=0,則k1等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把長方形紙片ABCD沿EF折疊后,使得點D與點B重合,點C落在點C′的位置上.
(1)折疊后,DC的對應(yīng)線段是 ,CF的對應(yīng)線段是 .
(2)若∠1=55°,求∠2、∠3的度數(shù);
(3)若AB=6,AD=12,求△BC′F的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)醫(yī)學(xué)研究,使用某種抗生素治療心肌炎,人體內(nèi)每毫升血液中的含藥量不少于4微克時,治療有效.如果一患者按規(guī)定劑量服用這種抗生素,服用后每毫升血液中的含藥量(微克)與服用后的時間(小時)之間的函數(shù)關(guān)系如圖所示:
(1)如果上午8時服用該藥物,到 時該藥物的濃度達(dá)到最大值 微克/毫升;
(2)根據(jù)圖象求出從服用藥物起到藥物濃度最高時y與t之間的函數(shù)解析式;
(3)如果上午8時服用該藥物,到 時該藥物開始有效,有效時間一共是 小時;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com