【題目】如圖所示,某大學(xué)的樓門是一拋物線形水泥建筑物,大門的地面寬度為,兩側(cè)距離地面高處各有一個掛校名橫匾用的鐵環(huán),兩鐵環(huán)的水平距離為,則校門的高約為(精確到,水泥建筑物的厚度忽略不計)( )

A. 9.2m B. 9.1m C. 9.0m D. 8.9m

【答案】B

【解析】

由題意可知,以地面為x軸,大門左邊與地面的交點為原點建立平面直角坐標系,拋物線過(0,0)、(8,0)、(1、4)、(7、4),運用待定系數(shù)法求出解析式后,求函數(shù)值的最大值即可.

解:以地面為x軸,大門左邊與地面的交點為原點建立平面直角坐標系,

則拋物線過O(0,0)、E(8,0)、A(1、4)、B(7、4)四點,
設(shè)該拋物線解析式為:yax2bxc,
,
解得:.


故函數(shù)解析式為:y=-x2x
當(dāng)x=4時,可得y=-≈9.1米,
故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN表示某引水工程的一段設(shè)計路線,從MN的走向為南偏東30°M的南偏東60°方向上有一點A,以A為圓心,500m為半徑的圓形區(qū)域為居民區(qū),取MN上另一點B,測得BA方向為南偏東75°,已知MB400m,通過計算回答,如果不改變方向,輸水路線是否會穿過居民區(qū)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鳳城商場經(jīng)銷一種高檔水果,售價為每千克50

1)連續(xù)兩次降價后售價為每千克32元,若每次下降的百分率相同.求平均下降的百分率;

2)已知這種水果的進價為每千克40元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),若每千克漲價1元,日銷售量將減少20千克,每千克應(yīng)漲價多少元才能使每天獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx2x軸交于點A,與y軸交于點B,ABBC,且點Cx軸上,若拋物線yax2bxcC為頂點,且經(jīng)過點B,求這條拋物線對應(yīng)的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為更好地開展選修課,戲劇社的張老師統(tǒng)計了近五年該社團學(xué)生參加市級比賽的獲獎情況,并繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中的信息,完成下列問題:

該社團2017年獲獎學(xué)生人數(shù)占近五年獲獎總?cè)藬?shù)的百分比為_____,補全折線統(tǒng)計圖;

該社團2017年獲獎學(xué)生中,初一、初二年級各有一名學(xué)生,其余全是初三年級學(xué)生,張老師打算從2017年獲獎學(xué)生中隨機抽取兩名學(xué)生參加學(xué)校的藝術(shù)節(jié)表演,請你用列表法或畫樹狀圖的方法,求出所抽取兩名學(xué)生恰好都來自初三年級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方形ABCD的邊長為3a,兩動點E,F分別從頂點B,C同時開始以相同速度沿邊BC,CD運動,與BCF相應(yīng)的EGH在運動過程中始終保持EGH≌△BCFB,EC,G在一條直線上.

(1)BEa,求DH的長.

(2)當(dāng)E點在BC邊上的什么位置時,DHE的面積取得最小值?并求該三角形面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某賓館有50個房間供游客住宿,當(dāng)每個房間的房價為每天180元時,房間會全部住滿.當(dāng)每個房間 每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每天支出20元的各種費用.根據(jù)規(guī)定,每個房間每天的房價不得高于340元.設(shè)每個房間的房價增加x元(x10的正整數(shù)倍).

1)設(shè)一天訂住的房間數(shù)為y,直接寫出yx的函數(shù)關(guān)系式及自變量x的取值范圍;

2)設(shè)賓館一天的利潤為w元,求wx的函數(shù)關(guān)系式;

3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點IABC的內(nèi)心,AI的延長線交邊BC于點D,交ABC的外接圓于點E.

(1)求證:IEBE;

(2)IE4,AE8,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖象交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖象于點M,交AB于點N,連接BM.

(1)求m的值和反比例函數(shù)的表達式;

(2)觀察圖象,直接寫出當(dāng)x>0時不等式2x+6﹣<0的解集;

(3)直線y=n沿y軸方向平移,當(dāng)n為何值時,BMN的面積最大?最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案