【題目】如圖,∠AOB=45°,過OA上到點O的距離分別為1,3,5,7,9,11,的點作OA的垂線與OB相交,得到并標(biāo)出一組黑色梯形,它們的面積分別為S1,S2,S3,S4,…,觀察圖中的規(guī)律,求出第10個黑色梯形的面積S10=_____.
【答案】76
【解析】
仔細(xì)觀察可發(fā)現(xiàn)規(guī)律:第n個黑色梯形的上底=1+(n﹣1)×4,下底=1+(n﹣1)×4+2,然后按此公式求得上下底,再利用面積公式計算面積就行了.
解法①:從圖中可以看出,第一個黑色梯形的上底為1,下底為3,第2個黑色梯形的上底為5=1+4,下底為7=1+4+2,第3個黑色梯形的上底為9=1+2×4,下底為11=1+2×4+2,則第n個黑色梯形的上底=1+(n﹣1)×4,下底=1+(n﹣1)×4+2,
∴第10個黑色梯形的上底=1+(10﹣1)×4=37,下底=1+(10﹣1)×4+2=39,
∴第10個黑色梯形面積S10=×(37+39)×2=76.
解法②根據(jù)圖可知:
S1=4,
S2=12,
S3=20,
以此類推得Sn=8n﹣4,
S10=8×10﹣4=76.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△A1C1C2的周長為1,作C1D1⊥A1C2于D1,在C1C2的延長線上取點C3,使D1C3=D1C1,連接D1C3,以C2C3為邊作等邊△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延長線上取點C4,使D2C4=D2C2,連接D2C4,以C3C4為邊作等邊△A3C3C4;…且點A1,A2,A3,…都在直線C1C2同側(cè),如此下去,可得到△A1C1C2,△A2C2C3,△A3C3C4,…,△AnCnCn+1,則△AnCnCn+1的周長為_______(n≥1,且n為整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】彈簧原長(不掛重物)15cm,彈簧總長L(cm)與重物質(zhì)量x(kg)的關(guān)系如下表所示:
彈簧總長L(cm) | 16 | 17 | 18 | 19 | 20 |
重物重量x(kg) | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 |
當(dāng)重物質(zhì)量為5kg(在彈性限度內(nèi))時,彈簧總長L(cm)是( 。
A.22.5B.25C.27.5D.30
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=-x2+bx+C的圖象與坐標(biāo)軸交于A、B、C三點,其中點A的坐標(biāo)為(0,8),點B的坐標(biāo)為(-4,0).
(1)求該二次函數(shù)的表達式及點C的坐標(biāo);
(2)點D的坐標(biāo)為(0,4),點F為該二次函數(shù)在第一象限內(nèi)圖象上的動點,連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF,設(shè)平行四邊形CDEF的面積為S.
①求S的最大值;
②在點F的運動過程中,當(dāng)點E落在該二次函數(shù)圖象上時,請直接寫出此時S的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某風(fēng)景區(qū)內(nèi)有一瀑布,AB表示瀑布的垂直高度,在與瀑布底端同一水平位置的點D處測得瀑布頂端A的仰角β為45°,沿坡度i=1:3的斜坡向上走100米,到達觀景臺C,在C處測得瀑布頂端A的仰角α為37°,若點B、D、E在同一水平線上.(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.41,≈3.16)
(1)觀景臺的高度CE為 米(結(jié)果保留準(zhǔn)確值);
(2)求瀑布的落差AB(結(jié)果保留整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線L1:y=-x2-2x+3交x軸于A,B兩點,交y軸于M點拋物線L1向右平移2個單位得到拋物線L2,L2交x軸于C,D兩點.
(1)求拋物線L2對應(yīng)的函數(shù)表達式;
(2)拋物線L1或L2在x軸上方的部分是否存在點N,使以A,C,M,N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標(biāo);若不存在,請說明理由;
(3)若點P是拋物線L1上的一個動點(P不與點A,B重合),那么點P關(guān)于原點的對稱點Q是否在拋物線L2上?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,四邊形是正方形,點為正方形對角線的交點,點,點,點.分別延長到,到,使,,再以,為鄰邊作平行四邊形.
(Ⅰ)求點的坐標(biāo);
(Ⅱ)如圖②,將四邊形繞點逆時針旋轉(zhuǎn)得四邊形,點,,旋轉(zhuǎn)后的對應(yīng)點分別為,,,旋轉(zhuǎn)角為.
①旋轉(zhuǎn)過程中,當(dāng)時,求點的坐標(biāo);
②在旋轉(zhuǎn)過程中,求的取值范圍(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年由于防控疫情,師生居家隔離線上學(xué)習(xí),AB和CD是社區(qū)兩棟鄰樓的示意圖,小華站在自家陽臺的C點,測得對面樓頂點A的仰角為30°,地面點E的俯角為45°.點E在線段BD上.測得B,E間距離為8.7米.樓AB高12米.求小華家陽臺距地面高度CD的長(結(jié)果精確到1米,1.41,1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著地鐵和共享單車的發(fā)展,“地鐵+單車”已成為很多市民出行的選擇.李華從文化宮站出發(fā),先乘坐地鐵,準(zhǔn)備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車回家.設(shè)他出地鐵的站點與文化宮站的距離為(單位:km),乘坐地鐵的時間(單位:min)是關(guān)于的一次函數(shù),其關(guān)系如下表:
地鐵站 | A | B | C | D | E |
x/km | 7 | 9 | 11 | 12 | 13 |
y1/min | 16 | 20 | 24 | 26 | 28 |
(1)求關(guān)于的函數(shù)解析式;
(2)李華騎單車的時間(單位:min)也受的影響,其關(guān)系可以用=2-11+78來描述.求李華應(yīng)選擇在哪一站出地鐵,才能使他從文化宮站回到家所需的時間最短,并求出最時間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com