【題目】如圖,將△ABC繞點B順時針旋轉(zhuǎn)60°得△DBE,點C的對應點E恰好落在AB延長線上,連接AD.下列結(jié)論一定正確的是()
A. AD∥BC B. ∠CBE=∠C C. ∠ABD=∠E D. AD=BC
【答案】A
【解析】由題意易得∠ABD=∠CBE=60°,AB=BE,由此可得△ABD是等邊三角形,從而可得∠ADB=60°,結(jié)合點E在AB的延長線上可得∠DBC=180°-60°-60°=60°即可得到∠ADB=∠DBC,由此可得AD∥BC,從而說明選項A正確;而由∠CBE是△ABC的外角,∠ABD是△BDE的外角可得∠CBE>∠C,∠ABD>∠E ,從而說明選項B、C不成立;由AD=AB,而ABBC說明選項D不成立.
(1)∵△DBE是由△ABC繞點B旋轉(zhuǎn)60°得到的,
∴∠ABD=∠CBE=60°,AB=DB,∠C=∠E,
∴△ABD是等邊三角形,
∴∠ADB=60°,
∵點E在AB的延長線上,
∴∠DBC=180°-60°-60°=60°,
∴∠ADB=∠DBC,
∴AD∥BC,故選項A中結(jié)論成立;
(2)∵∠CBE是△ABC的外角,∠ABD是△BDE的外角,
∴∠CBE>∠C,∠ABD>∠E,故選項B和選項C中結(jié)論不成立;
(3)∵△ABD是等邊三角形,
∴AD=AB,
∵在△ABD中,ABBC,
∴ADBC,故選項D中結(jié)論不成立.
綜上所述,只有A中結(jié)論成立,B、C、D中結(jié)論都不成立.
故選A.
科目:初中數(shù)學 來源: 題型:
【題目】(1)材料1:一般地,n個相同因數(shù)a相乘: 記為 如,此時,3叫做以2為底的8的對數(shù),記為log28(即log28=3).那么,log39=________,=________;
(2)材料2:新規(guī)定一種運算法則:自然數(shù)1到n的連乘積用n!表示,例如:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…在這種規(guī)定下,請你解決下列問題:
①算5!=________;
②已知x為整數(shù),求出滿足該等式的.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題情境:以直線AB上一點O為端點作射線OM、ON,將一個直角三角形的直角頂點放在O處(∠COD=90°).
(1)如圖1,直角三角板COD的邊OD放在射線OB上,OM平分∠AOC,ON和OB重合,則∠MON=_°;
(2)直角三角板COD繞點O旋轉(zhuǎn)到如圖2的位置,OM平分∠AOC,ON平分∠BOD,求∠MON的度數(shù)。
(3)直角三角板COD繞點O旋轉(zhuǎn)到如圖3的位置,OM平分∠ AOC ,ON平分∠BOD,猜想∠MON的度數(shù),并說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=10,∠C=30°,點D從點C出發(fā)沿CA方向以每秒2個單位長度的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長度的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t(t>0)秒,過點D作DF⊥BC于點F,連接DE、EF.
(1)求證:四邊形AEFD是平行四邊形;
(2)當t為何值時,△DEF是等邊三角形?說明理由;
(3)當t為何值時,△DEF為直角三角形?(請直接寫出t的值)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有四張背面完全相同的紙牌,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.
(1)從中隨機摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;
(2)小明和小亮約定做一個游戲,其規(guī)則為:先由小明隨機摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B、C、D均在⊙O上,FB與⊙O相切于點B,AB與CF交于點G,OA⊥CF于點E,AC∥BF.
(1)求證:FG=FB.
(2)若tan∠F=,⊙O的半徑為4,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2016浙江省麗水市)如圖,AB是以BC為直徑的半圓O的切線,D為半圓上一點,AD=AB,AD,BC的延長線相交于點E.
(1)求證:AD是半圓O的切線;
(2)連結(jié)CD,求證:∠A=2∠CDE;
(3)若∠CDE=27°,OB=2,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一條筆直的東西向海岸線l上有一長為1.5km的碼頭MN和燈塔C,燈塔C距碼頭的東端N有20km.一輪船以36km/h的速度航行,上午10:00在A處測得燈塔C位于輪船的北偏西30°方向,上午10:40在B處測得燈塔C位于輪船的北偏東60°方向,且與燈塔C相距12km.
(1)若輪船照此速度與航向航向,何時到達海岸線?
(2)若輪船不改變航向,該輪船能否?吭诖a頭?請說明理由(參考數(shù)據(jù): ≈1.4, ≈1.7).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com