(1)先化簡,再求值:(a2b-2ab2-b3)÷b-(a+b)(a-b),其中a=,b=-1.
(2)解分式方程:
【答案】分析:(1)先進行整式的除法運算,再運用平方差公式展開,然后合并同類項,繼而得出最簡整式,最后代入a和b的值即可;
(2)觀察可得最簡公分母為x(x+1),方程兩邊同乘最簡公分母,可以把分式方程轉(zhuǎn)化為整式方程求解.
解答:解:(1)原式=a2-2ab-b2-(a2-b2)=a2-2ab-b2-a2+b2=-2ab,
當(dāng)a=,b=-1時,原式=-2××(-1)=1;

(2)方程兩邊同乘x(x+1),得
x2+(x+1)(x+2)=2x(x+1),
解得x=-2.
將x=-2代入x(x+1)=2≠0.
所以x=-2是原方程的解.
點評:本題考查了整式的混合運算、化簡求值及解分式方程.在進行整式的混合運算時,要注意公式的運用.解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解;解分式方程一定注意要驗根.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

先化簡,再求值:
2a-6
a-2
÷(
5
a-2
-a-2)
,其中a=-3
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、先化簡,再求值:3x2+(2-3x-x2)-(x2+x-1),其中x=-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計算:(1)
2
(2cos45°-sin60°)+
24
4

(2)先化簡,再求值
a2-1
a+3
÷
a+1
2
,其中a=2tan60°-3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)先化簡,再求值:(x-
x
x+1
)
÷(1+
1
x2-1
)
,其中x=
3
-1.
(2)解分式方程:解方程:
1
x-2
+3=
x-1
2-x

(3)解不等式組
x-2
3
+3<x-1  ①
1-3(x+1)≥6-x   ②

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先化簡,再求值:-9y+6x2-3(y-
23
x2)
,其中x=2,y=-1.

查看答案和解析>>

同步練習(xí)冊答案