【題目】計(jì)算: ﹣2sin45°﹣(1+ 0+21

【答案】解:原式= ﹣2× ﹣1+ =﹣
【解析】本題涉及零指數(shù)冪、負(fù)指數(shù)冪、特殊角的三角函數(shù)值3個(gè)考點(diǎn).在計(jì)算時(shí),需要針對(duì)每個(gè)考點(diǎn)分別進(jìn)行計(jì)算,然后根據(jù)實(shí)數(shù)的運(yùn)算法則求得計(jì)算結(jié)果.
【考點(diǎn)精析】本題主要考查了零指數(shù)冪法則和整數(shù)指數(shù)冪的運(yùn)算性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));aman=am+n(m、n是正整數(shù));(amn=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù))才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC=3,BC=2,點(diǎn)D是邊AB上的動(dòng)點(diǎn),過點(diǎn)D作DE∥BC,交邊AC于點(diǎn)E,點(diǎn)Q是線段DE上的點(diǎn),且QE=2DQ,連接BQ并延長,交邊AC于點(diǎn)P.設(shè)BD=x,AP=y.
(1)求y關(guān)于x的函數(shù)解析式及定義域;
(2)當(dāng)△PQE是等腰三角形時(shí),求BD的長;
(3)連接CQ,當(dāng)∠CQB和∠CBD互補(bǔ)時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖1是由5個(gè)完全相同的正方體堆成的幾何體,現(xiàn)將標(biāo)有E的正方體平移至如圖2所示的位置,下列說法中正確的是(
A.左、右兩個(gè)幾何體的主視圖相同
B.左、右兩個(gè)幾何體的左視圖相同
C.左、右兩個(gè)幾何體的俯視圖不相同
D.左、右兩個(gè)幾何體的三視圖不相同

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,AB=AC,tan∠B=2,BC=4,D為BC邊的中點(diǎn),點(diǎn)E在BC邊的延長線上,且CE=BC,連接AE,F(xiàn)為線段AE的中點(diǎn)
(1)求線段CF的長;
(2)求∠CAE的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校綜合實(shí)踐活動(dòng)小組的同學(xué)欲測(cè)量公園內(nèi)一棵樹DE的高度,他們?cè)谶@棵樹正前方一座樓亭前的臺(tái)階上A點(diǎn)處測(cè)得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺(tái)階下的點(diǎn)C處,測(cè)得樹頂端D的仰角為60°.已知A點(diǎn)的高度AB為2m,臺(tái)階AC的傾斜角∠ACB為30°,且B、C、E三點(diǎn)在同一條直線上.請(qǐng)根據(jù)以上條件求出樹DE的高度(測(cè)傾器的高度忽略不計(jì)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對(duì)稱軸為直線x= 的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).

(1)求拋物線解析式及頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對(duì)角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
①當(dāng)平行四邊形OEAF的面積為24時(shí),請(qǐng)判斷平行四邊形OEAF是否為菱形?
②是否存在點(diǎn)E,使平行四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平行四邊形ABCD中,AE平分∠BAD,交BC于點(diǎn)E,BF平分∠ABC,交AD于點(diǎn)F,AE與BF交于點(diǎn)P,連接EF,PD.
(1)求證:四邊形ABEF是菱形.
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)課本上,同學(xué)們已經(jīng)探究過“經(jīng)過已知直線外一點(diǎn)作這條直線的垂線“的尺規(guī)作圖過程:
已知:直線l和l外一點(diǎn)P

求作:直線l的垂線,使它經(jīng)過點(diǎn)P.
作法:如圖:⑴在直線l上任取兩點(diǎn)A、B;
⑵分別以點(diǎn)A、B為圓心,AP,BP長為半徑畫弧,兩弧相交于點(diǎn)Q;
⑶作直線PQ.
參考以上材料作圖的方法,解決以下問題:
(1)以上材料作圖的依據(jù)是:
(2)已知,直線l和l外一點(diǎn)P,
求作:⊙P,使它與直線l相切.(尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆描黑)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市東坡實(shí)驗(yàn)中學(xué)準(zhǔn)備開展“陽光體育活動(dòng)”,決定開設(shè)足球、籃球、乒乓球、羽毛球、排球等球類活動(dòng),為了了解學(xué)生對(duì)這五項(xiàng)活動(dòng)的喜愛情況,隨機(jī)調(diào)查了m名學(xué)生(每名學(xué)生必選且只能選擇這五項(xiàng)活動(dòng)中的一種).

根據(jù)以上統(tǒng)計(jì)圖提供的信息,請(qǐng)解答下列問題:
(1)m= , n=
(2)補(bǔ)全上圖中的條形統(tǒng)計(jì)圖.
(3)若全校共有2000名學(xué)生,請(qǐng)求出該校約有多少名學(xué)生喜愛打乒乓球.
(4)在抽查的m名學(xué)生中,有小薇、小燕、小紅、小梅等10名學(xué)生喜歡羽毛球活動(dòng),學(xué)校打算從小薇、小燕、小紅、小梅這4名女生中,選取2名參加全市中學(xué)生女子羽毛球比賽,請(qǐng)用列表法或畫樹狀圖法,求同時(shí)選中小紅、小燕的概率.(解答過程中,可將小薇、小燕、小紅、小梅分別用字母A、B、C、D代表)

查看答案和解析>>

同步練習(xí)冊(cè)答案