【題目】在抗擊“新冠肺炎”戰(zhàn)役中,某公司接到轉(zhuǎn)產(chǎn)生產(chǎn)1440萬個(gè)醫(yī)用防護(hù)口罩補(bǔ)充防疫一線需要的任務(wù),臨時(shí)改造了甲、乙兩條流水生產(chǎn)線.試產(chǎn)時(shí)甲生產(chǎn)線每天的產(chǎn)能(每天的生產(chǎn)的數(shù)量)是乙生產(chǎn)線的2倍,各生產(chǎn)80萬個(gè),甲比乙少用了2天.

1)求甲、乙兩條生產(chǎn)線每天的產(chǎn)能各是多少?

2)若甲、乙兩條生產(chǎn)線每天的運(yùn)行成本分別是1.2萬元和0.5萬元,要使完成這批任務(wù)總運(yùn)行成本不超過40萬元,則至少應(yīng)安排乙生產(chǎn)線生產(chǎn)多少天?

3)正式開工滿負(fù)荷生產(chǎn)3天后,通過技術(shù)革新,甲生產(chǎn)線的日產(chǎn)能提高了50%,乙生產(chǎn)線的日產(chǎn)能翻了一番.再滿負(fù)荷生產(chǎn)13天能否完成任務(wù)?

【答案】1)甲條生產(chǎn)線每天的產(chǎn)能是40萬個(gè),乙條生產(chǎn)線每天的產(chǎn)能是20萬個(gè);(2)至少應(yīng)安排乙生產(chǎn)線生產(chǎn)32天;(3)再滿負(fù)荷生產(chǎn)13天能完成任務(wù).

【解析】

1)設(shè)乙條生產(chǎn)線每天的產(chǎn)能是x萬個(gè),則甲條生產(chǎn)線每天的產(chǎn)能是2x萬個(gè),根據(jù)題意列出方程即求解可;

2)設(shè)安排乙生產(chǎn)線生產(chǎn)y天,再根據(jù)完成這批任務(wù)總運(yùn)行成本不超過40萬元列出不等式求解即可;

3)根據(jù)題意求出原來滿負(fù)荷生產(chǎn)3天和再滿負(fù)荷生產(chǎn)13天的產(chǎn)能的和,然后與1440萬相比即可解答.

解:(1)設(shè)乙條生產(chǎn)線每天的產(chǎn)能是x萬個(gè),則甲條生產(chǎn)線每天的產(chǎn)能是2x萬個(gè),依題意有

2,

解得x20,

經(jīng)檢驗(yàn),x20是原方程的解,

2x2×2040,

故甲條生產(chǎn)線每天的產(chǎn)能是40萬個(gè),乙條生產(chǎn)線每天的產(chǎn)能是20萬個(gè);

2)設(shè)安排乙生產(chǎn)線生產(chǎn)y天,依題意有

0.5y+1.2×40,

解得y32

故至少應(yīng)安排乙生產(chǎn)線生產(chǎn)32天;

3)(40+20)×3+[40×(1+50%+20×2]×13

180+1300

1480(萬個(gè)),

1440萬個(gè)<1480萬個(gè),

故再滿負(fù)荷生產(chǎn)13天能完成任務(wù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù) 的圖象相交于第一、三象限內(nèi)的兩點(diǎn),與軸交于點(diǎn) .

⑴求該反比例函數(shù)和一次函數(shù)的解析式;

⑵在軸上找一點(diǎn)使最大,求的最大值及點(diǎn)的坐標(biāo);

⑶直接寫出當(dāng)時(shí),的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,動(dòng)點(diǎn)PA點(diǎn)出發(fā),按A→B→C的方向在ABBC上移動(dòng),記PA=x,點(diǎn)D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四個(gè)命題:①如果一個(gè)數(shù)的相反數(shù)等于它本身,則這個(gè)數(shù)是0;②一個(gè)數(shù)的倒數(shù)等于它本身,則這個(gè)數(shù)是1;③一個(gè)數(shù)的算術(shù)平方根等于它本身,則這個(gè)數(shù)是10;④甲、乙兩射擊運(yùn)動(dòng)員分別射擊10次,他們射擊成績(jī)的方差分別為=5,=2,這一過程中乙發(fā)揮比甲更穩(wěn)定.⑤點(diǎn)Mab),Ncd)都在反比例函數(shù)y=的圖象上.若ac,則bd.其中真命題有(  )個(gè).

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A(﹣10),B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C0,3),作直線BC.動(dòng)點(diǎn)Px軸上運(yùn)動(dòng),過點(diǎn)PPMx軸,交拋物線于點(diǎn)M,交直線BC于點(diǎn)N,設(shè)點(diǎn)P的橫坐標(biāo)為m

1)求拋物線的解析式;

2)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),求線段MN的最大值;

3)是否存在點(diǎn)P,使得以點(diǎn)CO、M、N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某小區(qū)有甲、乙兩座樓房,樓間距BC50米,在乙樓頂部A點(diǎn)測(cè)得甲樓頂部D點(diǎn)的仰角為37°,在乙樓底部B點(diǎn)測(cè)得甲樓頂部D點(diǎn)的仰角為60°,則甲、乙兩樓的高度分別為多少?(結(jié)果精確到1米,sin37°≈0.60cos37°≈0.80,tan37°≈0.75≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,,AC、BD交于點(diǎn)O,點(diǎn)PQ分別是AB、BD上的動(dòng)點(diǎn),點(diǎn)P的運(yùn)動(dòng)路徑是,點(diǎn)Q的運(yùn)動(dòng)路徑是BD,兩點(diǎn)的運(yùn)動(dòng)速度相同并且同時(shí)結(jié)束.若點(diǎn)P的行程為x的面積為y,則y關(guān)于x的函數(shù)圖象大致為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是某火車站候車室前的自動(dòng)扶梯,長(zhǎng)為30m,坡角為37°,平臺(tái)BD與大樓CE垂直,且與扶梯AB的長(zhǎng)度相等,在B處測(cè)得大樓頂部C的仰角為65°,求大樓CE的高度.(結(jié)果精確到0.1m)(參考數(shù)據(jù):sin37°≈tan37°≈,sin65°≈tan65°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在ABC中,∠ABC=90°,AB=BC,點(diǎn)D為線段BC上一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B、C重合),點(diǎn)B關(guān)于直線AD的對(duì)稱點(diǎn)為E,作射線DE,過點(diǎn)CBC的垂線,交射線DE于點(diǎn)F,連接AE

1)依題意補(bǔ)全圖形;

2AEDF的位置關(guān)系是

3)連接AF,小昊通過觀察、實(shí)驗(yàn),提出猜想:發(fā)現(xiàn)點(diǎn)D 在運(yùn)動(dòng)變化的過程中,∠DAF的度數(shù)始終保持不變,小昊把這個(gè)猜想與同學(xué)們進(jìn)行了交流,經(jīng)過測(cè)量,小昊猜想∠DAF= °,通過討論,形成了證明該猜想的兩種想法:

想法1:過點(diǎn)AAGCF于點(diǎn)G,構(gòu)造正方形ABCG,然后可證AFG≌△AFE……

想法2:過點(diǎn)BBGAF,交直線FC于點(diǎn)G,構(gòu)造ABGF,然后可證AFE≌△BGC……

請(qǐng)你參考上面的想法,幫助小昊完成證明(一種方法即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案