【題目】已知,在直角坐標(biāo)系中,有A(0,3),B(2,1),C(﹣3,﹣3)三點(diǎn).

(1)請(qǐng)?jiān)谄矫嬷苯亲鴺?biāo)系中描出各點(diǎn),并畫(huà)出三角形ABC;

(2)三角形ABC的面積是   ;(直接寫(xiě)出結(jié)果)

(3)設(shè)BCy軸于點(diǎn)P,試求P點(diǎn)的坐標(biāo).

【答案】(1)作圖見(jiàn)解析;(2)9;(3)P點(diǎn)坐標(biāo)為(0,-).

【解析】

(1)根據(jù)A、B、C點(diǎn)的坐標(biāo)描點(diǎn),從而得到△ABc;

(2)用一個(gè)矩形的面積分別減去三個(gè)三角形的面積得到△ABC的面積;

(3)利用S△ABC=S△ABP+S△ACP計(jì)算出AP的長(zhǎng),從而得到P點(diǎn)坐標(biāo).

解:(1)如圖,△ABC為所作;

(2)S△ABC=5×6-×5×4-×2×2-×3×6=9;

故答案為9;

(3)∵S△ABC=S△ABP+S△ACP,

×3×AP+×2×AP=9,解得AP=,

∴OP=-3=,

∴P點(diǎn)坐標(biāo)為(0,-).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為弘揚(yáng)敬老愛(ài)老傳統(tǒng)美德,某校八年級(jí)(1)班的學(xué)生要去距離學(xué)校10km的敬老院看望老人,一部分學(xué)生騎自行車(chē)先走,過(guò)了20min后,其余學(xué)生乘汽車(chē)出發(fā),結(jié)果乘汽車(chē)的同學(xué)早到10min.已知汽車(chē)的速度是騎車(chē)學(xué)生的4倍,求騎車(chē)學(xué)生的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,一個(gè)長(zhǎng)方形的三個(gè)頂點(diǎn)坐標(biāo)分別為(﹣2,﹣2),(﹣2,3),(5,﹣2),則第四個(gè)頂點(diǎn)的坐標(biāo)(  )

A. (5,3) B. (3,5) C. (7,3) D. (3,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC是等腰直角三角形,∠BAC=90°,點(diǎn)DBC的中點(diǎn),作正方形DEFG,連接AE,若BC=DE=2,將正方形DEFG繞點(diǎn)D逆時(shí)針?lè)较蛐D(zhuǎn),在旋轉(zhuǎn)過(guò)程中,當(dāng)AE為最大值時(shí),則AF的值_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:我們把三角形被一邊中線分成的兩個(gè)三角形叫做友好三角形”.

性質(zhì):如果兩個(gè)三角形是友好三角形,那么這兩個(gè)三角形的面積相等.

理解:如圖①,在△ABC中,CDAB邊上的中線,那么△ACD和△BCD友好三角形,并且SACD=SBCD

應(yīng)用:如圖②,在矩形ABCD中,AB=4,BC=6,點(diǎn)EAD上,點(diǎn)FBC上,AE=BF,AFBE交于點(diǎn)O.

(1)求證:△AOB和△AOE友好三角形”;

(2)連接OD,若△AOE和△DOE友好三角形,求四邊形CDOF的面積.

探究:在△ABC中,∠A=30°,AB=4,點(diǎn)D在線段AB上,連接CD,ACD和△BCD友好三角形,將△ACD沿CD所在直線翻折,得到△A′CD,若△A′CD與△ABC重合部分的面積等于△ABC面積的,請(qǐng)直接寫(xiě)出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,扇形紙扇完全打開(kāi)后,陰影部分為貼紙,外側(cè)兩竹條AB,AC的夾角為120°,弧BC的長(zhǎng)為30πcm,AD的長(zhǎng)為15cm,則貼紙的面積等于cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AB=6,AD=8,P是BC邊上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B重合).設(shè)PA=x,點(diǎn)D到PA的距離為y,求y與x之間的函數(shù)表達(dá)式,并求出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為推廣陽(yáng)光體育“大課間”活動(dòng),某中學(xué)決定在學(xué)生中開(kāi)設(shè)A:實(shí)心球,B:立定跳遠(yuǎn),C:跳繩,D:跑步四種活動(dòng)項(xiàng)目,為了了解學(xué)生對(duì)四種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中的信息解答下列問(wèn)題:
(1)在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)請(qǐng)計(jì)算喜歡“立定跳遠(yuǎn)”的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若調(diào)查到喜歡“跳繩”的4名學(xué)生中有2名男生,2名女生.現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生.請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC是等邊三角形,點(diǎn)D是射線BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B、C重合),ADE是以AD為邊的等邊三角形,過(guò)點(diǎn)EBC的平行線,分別交射線AB、AC于點(diǎn)FG,連接BE.

(1)如圖(a)所示,當(dāng)點(diǎn)D在線段BC上時(shí),

①求證:AEB≌△ADC;

②探究四邊形BCGE是怎樣特殊的四邊形?并說(shuō)明理由;

(2)如圖(b)所示,當(dāng)點(diǎn)DBC的延長(zhǎng)線上時(shí),直接寫(xiě)出(1)中的兩個(gè)結(jié)論是否成立___________;

(3)在(2)的情況下,當(dāng)點(diǎn)D運(yùn)動(dòng)到____________________時(shí),四邊形BCGE是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案