【題目】如圖,拋物線的圖象過(guò)點(diǎn)C(0,1),頂點(diǎn)為Q(2,3),點(diǎn)D在x軸正半軸上,線段OD=OC.
(1)求拋物線的解析式;
(2)拋物線上是否存在點(diǎn)M,使得△CDM是以CD為直角邊的直角三角形?若存在,請(qǐng)求出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)將直線CD繞點(diǎn)C逆時(shí)針?lè)较蛐D(zhuǎn)45°所得直線與拋物線相交于另一點(diǎn)E,連接QE.若點(diǎn)P是線段QE上的動(dòng)點(diǎn),點(diǎn)F是線段OD上的動(dòng)點(diǎn),問(wèn):在P點(diǎn)和F點(diǎn)的移動(dòng)過(guò)程中,△PCF的周長(zhǎng)是否存在最小值?若存在,求出這個(gè)最小值,若不存在,請(qǐng)說(shuō)明理由.
【答案】(1) ;(2)(2 , 3 )或 )或;(3)存在, .
【解析】試題分析:
(1)根據(jù)已知條件設(shè)拋物線解析式為,代入點(diǎn)C的坐標(biāo)就可以求出解析式了;
(2)①當(dāng)點(diǎn)C是直角頂點(diǎn)時(shí),由已知求出直線DM的解析式,再把所求解析式和(1)中所求二次函數(shù)解析式組合成方程組,解方程組即可求得點(diǎn)M的坐標(biāo);②當(dāng)點(diǎn)D是直角頂點(diǎn)時(shí),同①的方法可求得對(duì)應(yīng)的M的坐標(biāo);
(3)如圖3,分別作點(diǎn)C關(guān)于直線QE和直線OD的對(duì)稱點(diǎn)C′和C′′,連接C′C′′交OD于點(diǎn)F,交QE于點(diǎn)P,則△PCF即為符合題意的周長(zhǎng)最小的三角形,由軸對(duì)稱的性質(zhì)可知,△PCF的周長(zhǎng)等于線段C′C″的長(zhǎng)度;如圖4,連接C′E,作C′N⊥y軸于點(diǎn)N,結(jié)合已知條件解出C′C′′的長(zhǎng)度即可.
試題解析:
(1)設(shè)拋物線的解析式為,
將C(0,1)代入得: ,
解得: ,
∴拋物線的解析式為: 即;
(2)①如圖1,當(dāng)點(diǎn)C為直角頂點(diǎn)時(shí),
∵點(diǎn)C的坐標(biāo)為(0,1),
∴OD=OC=1,
∴點(diǎn)D的坐標(biāo)為(1,0),
設(shè)直線CD為,則: ,解答,
∴直線CD的解析式為: ,
∵此時(shí)CM⊥CD,
∴CM的解析式為: ,
由: ,解得: , ,
∵點(diǎn)(0,1)與點(diǎn)C重合,
∴點(diǎn)M的坐標(biāo)為(2,3),此時(shí)點(diǎn)M與點(diǎn)Q重合;
②如圖②,當(dāng)D為直角頂點(diǎn)時(shí),由①可得直線DM的解析式為,
由: ,解得: , ,
∴點(diǎn)M的坐標(biāo)為為或;
綜上所述,符合題意的M有三點(diǎn),分別是(2 , 3 ), 或.
(3) 存在.如圖③所示,作點(diǎn)C關(guān)于直線QE的對(duì)稱點(diǎn)C′,作點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)C″,連接C′C″,交OD于點(diǎn)F,交QE于點(diǎn)P,則△PCF即為符合題意的周長(zhǎng)最小的三角形,由軸對(duì)稱的性質(zhì)可知,△PCF的周長(zhǎng)等于線段C′C″的長(zhǎng)度.
如答圖④所示,連接C′E,
由(2)可知,QC⊥CD, 由題意可得:QC=QE,
∵∠DCE=45°,
∴∠QCE=45°=∠QEC,
∴△QCE是等腰直角三角形,
∵C,C′關(guān)于直線QE對(duì)稱,
∴△QC′E為等腰直角三角形,
∴△CEC′為等腰直角三角形,
∵在拋物線中,由解得,
∴點(diǎn)E的坐標(biāo)為(4,1),
∴CE=4=C′E,
∴點(diǎn)C′的坐標(biāo)為(4,5);
∵C,C″關(guān)于x軸對(duì)稱,
∴點(diǎn)C″的坐標(biāo)為(0,﹣1).
∴OC″=1,
過(guò)點(diǎn)C′作C′N⊥y軸于點(diǎn)N,則NC′=CE=4,NC″=4+1+1=6,
在Rt△C′NC″中,由勾股定理得:C′C″=.
綜上所述,在P點(diǎn)和F點(diǎn)移動(dòng)過(guò)程中,△PCF的周長(zhǎng)存在最小值,最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P與點(diǎn) Q 都在y軸上,且關(guān)于x軸對(duì)稱.
(1)請(qǐng)畫出△ABP 關(guān)于x軸的對(duì)稱圖形 (其中點(diǎn) A 的對(duì)稱點(diǎn)用 表示,點(diǎn) 的對(duì)稱點(diǎn)用 表示);
(2)點(diǎn)P ,Q 同時(shí)都從y軸上的位置出發(fā),分別沿l1,l2方向,以相同的速度向右運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中是否在某個(gè)位置使得 成立?若存在,請(qǐng)你在圖中畫出此時(shí) PQ 的位置(用線段 表示),若不存在,請(qǐng)你說(shuō)明理由(注:畫圖時(shí),先用鉛筆畫好,再用鋼筆描黑).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在中,,,為外角的平分線,.
(1)求證:四邊形為矩形;
(2)當(dāng)與滿足什么數(shù)量關(guān)系時(shí),四邊形是正方形?并給予證明
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,AC,BD是對(duì)角線。將△DCB繞著點(diǎn)D順時(shí)針旋轉(zhuǎn)45°得到△DGH,HG交AB于點(diǎn)E,連接DE交AC于點(diǎn)F,連接FG。則下列結(jié)論:①四邊形AEGF是菱形;②△AED≌△GED;③∠DFG=112.5°;④BC+FG=1.5.其中正確的結(jié)論是( )
A. ①②③④ B. ①②③ C. ①② D. ②
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知直線y=﹣2x+4與兩坐標(biāo)軸分別交于點(diǎn)A、B,點(diǎn)C為線段OA上一動(dòng)點(diǎn),連接BC,作BC的中垂線分別交OB、AB交于點(diǎn)D、E.
(l)當(dāng)點(diǎn)C與點(diǎn)O重合時(shí),DE= ;
(2)當(dāng)CE∥OB時(shí),證明此時(shí)四邊形BDCE為菱形;
(3)在點(diǎn)C的運(yùn)動(dòng)過(guò)程中,直接寫出OD的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+bx與y=bx+a的圖像可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)思考探究:如圖①,的內(nèi)角的平分線與外角的平分線相交于點(diǎn),請(qǐng)?zhí)骄?/span>與的關(guān)系是______.
(2)類比探究:如圖②,四邊形中,設(shè),,,四邊形的內(nèi)角與外角的平分線相交于點(diǎn).求的度數(shù).(用,的代數(shù)式表示)
(3)拓展遷移:如圖③,將(2)中改為,其它條件不變,請(qǐng)?jiān)趫D③中畫出,并直接寫出_____.(用,的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,點(diǎn)為對(duì)角線的中點(diǎn),過(guò)點(diǎn)作交于點(diǎn),交于點(diǎn),連接,.
(1)求證:四邊形是菱形;
(2)連接,若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著手機(jī)普及率的提高,有些人開(kāi)始過(guò)分依賴手機(jī),一天中使用手機(jī)時(shí)間過(guò)長(zhǎng)而形成了“手機(jī)癮”,某校學(xué)生會(huì)為了了解本校初三年級(jí)的手機(jī)使用情況,隨機(jī)調(diào)查了部分學(xué)生的手機(jī)使用時(shí)間,將調(diào)查結(jié)果分成五類:
A、基本不用;B、平均每天使用1~2h;C、平均每天使用2~4h;D、平均每天使用4~6h;E、平均每天使用超過(guò)6h,并根據(jù)統(tǒng)計(jì)結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖.
(1)學(xué)生會(huì)一共調(diào)查了多少名學(xué)生?
(2)此次調(diào)查的學(xué)生中屬于E類的學(xué)生有 人,并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若一天中手機(jī)使用時(shí)間超過(guò)6h,則患有嚴(yán)重的“手機(jī)癮”,該校初三學(xué)生共有900人,請(qǐng)估計(jì)該校初三年級(jí)中患有嚴(yán)重的“手機(jī)癮”的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com