【題目】為鼓勵居民節(jié)約用水,某市對居民用水收費實行“階梯水價”,按每年用水量統(tǒng)計,不超過180立方米的部分按每立方米5元收費;超過180立方米不超過260立方米的部分按每立方米7元收費;超過260立方米的部分按每立方米9元收費.
(1)設每年用水量為x立方米,按“階梯水價”應繳水費y元,請寫出y(元)與x(立方米)之間的函數(shù)解析式;
(2)明明家預計2015年全年用水量為200立方米,那么按“階梯水價”收費,她家應繳水費多少元?
【答案】(1)y=;(2)1040元
【解析】
試題(1)根據(jù)題意分0≤x≤180,180<x≤260,x>260三段,根據(jù)收費=單價×數(shù)量列式整理即可得解;
(2)把x=200代入函數(shù)解析式計算即可得解.
試題解析:(1)當0≤x≤180時,y=5x,
當180<x≤260時,y=5×180+7(x﹣180),
即y=7x﹣360,
當x>260時,y=5×180+7×(260﹣180)+9(x﹣260),
即y=9x﹣880,
綜上所述,y=;
(2)當x=200時,y=7x﹣360=7×200﹣360=1040(元).
答:按“階梯水價”收費,她家應繳水費1040元.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,直尺的寬度為2cm,A、B兩點在直尺的一條邊上,AB=8cm,C、D兩點在直尺的另一條邊上.若∠ACB=∠ADB=90°,則C、D兩點之間的距離為cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】放風箏是大家喜愛的一種運動,星期天的上午小明在市政府廣場上放風箏.如圖,他在A處不小心讓風箏掛在了一棵樹梢上,風箏固定在了D處,此時風箏AD與水平線的夾角為30°,為了便于觀察,小明迅速向前邊移動,收線到達了離A處10米的B處,此時風箏線BD與水平線的夾角為45°.已知點A,B,C在同一條水平直線上,請你求出小明此時所收回的風箏線的長度是多少米?(風箏線AD,BD均為線段, ≈1.414, ≈1.732,最后結果精確到1米).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知 A=2 x2+3xy﹣2x﹣1,B= x2﹣xy﹣1.
(1)化簡:4A﹣(2B+3A),將結果用含有 x、y 的式子表示;
(2)若式子 4A﹣(2B+3A)的值與字母 x 的取值無關,求 y3+A﹣ B 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:為了求1+3+32+33+…+3100的值,可設M=1+3+32+33+…+3100,則3M=3+32+33+34+…+3101,因此3M﹣M=3101﹣1.所以M=,即1+3+32+33+…+3100=.問題解決:仿照上述方法求下列式子的值.
(1)1+4+42+43+…+420.
(2)5101+5102+5103+…+52018.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1:y=x與雙曲線y= 相交于點A(a,2),將直線l1向上平移3個單位得到l2 , 直線l2與雙曲線相交于B、C兩點(點B在第一象限),交y軸于D點.
(1)求雙曲線y= 的解析式;
(2)求tan∠DOB的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,在平面直角坐標系中,拋物線y=ax2+3x+c與x軸交于A、B兩點,與y軸交于點C(0,8),直線l經過原點O,與拋物線的一個交點為D(6,8).
(1)求拋物線的解析式;
(2)拋物線的對稱軸與直線l交于點E,點T為x軸上方的拋物線上的一個動點.
①當∠TEC=∠TEO時,求點T的坐標;
②直線BT與y軸交于點P,與直線l交于點Q,當OP=OQ時,求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com