【題目】某廠按用戶的月需求量(件)完成一種產品的生產,其中.每件的售價為18萬元,每件的成本(萬元)是基礎價與浮動價的和,其中基礎價保持不變,浮動價與月需求量(件)成反比.經市場調研發(fā)現,月需求量與月份(為整數,)符合關系式(為常數),且得到了表中的數據.
月份(月) | 1 | 2 |
成本(萬元/件) | 11 | 12 |
需求量(件/月) | 120 | 100 |
(1)求與滿足的關系式,請說明一件產品的利潤能否是12萬元;
(2)求,并推斷是否存在某個月既無盈利也不虧損;
(3)在這一年12個月中,若第個月和第個月的利潤相差最大,求.
【答案】(1),不可能;(2)不存在;(3)1或11.
【解析】
試題分析:(1)根據每件的成本y(萬元)是基礎價與浮動價的和,其中基礎價保持不變,浮動價與月需求量x(件)成反比,結合表格,用待定系數法求y與x之間的函數關系式,再列方程求解,檢驗所得結果是還符合題意;(2)將表格中的n,對應的x值,代入到,求出k,根據某個月既無盈利也不虧損,得到一個關于n的一元二次方程,判斷根的情況;(3)用含m的代數式表示出第m個月,第(m+1)個月的利潤,再對它們的差的情況討論.
試題解析:(1)由題意設,由表中數據,得
解得∴.
由題意,若,則.
∵x>0,∴.
∴不可能.
(2)將n=1,x=120代入,得
120=2-2k+9k+27.解得k=13.
將n=2,x=100代入也符合.
∴k=13.
由題意,得18=6+,求得x=50.
∴50=,即.
∵,∴方程無實數根.
∴不存在.
(3)第m個月的利潤為w==;
∴第(m+1)個月的利潤為
W′=.
若W≥W′,W-W′=48(6-m),m取最小1,W-W′=240最大.
若W<W′,W′-W=48(m-6),m+1≤12,m取最大11,W′-W=240最大.
∴m=1或11.
科目:初中數學 來源: 題型:
【題目】為了打擊信息詐騙和反信息騷擾,深圳移動公司從2015年9月到10月間,共攔截疑似詐騙電話呼叫1298萬次,1298萬用科學記數法可表示為( )
A.1298×104
B.12.98×106
C.1.298×107
D.1.298×103
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC 中,AB=20cm,AC=12cm,點 P 從點 B 出發(fā)以每秒 3cm 的速度向點 A 運動,點 Q 從點 A 同時出發(fā)以每秒 2cm 的速度向點 C 運動,其中一個動點到達端點時,另一個動點也隨之停止運動,當△APQ 是以 PQ 為底的等腰三角形時,運動的時間是( )
A.2.5 秒
B.3 秒
C.3.5 秒
D.4 秒
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com