分析 (1)連接OD,由直線l與⊙O相切于點(diǎn)D可得出OD⊥l,結(jié)合l∥BC即可得出OD⊥BC,再根據(jù)垂徑定理即可得出$\widehat{BD}$=$\widehat{CD}$,進(jìn)而可得出∠BAD=∠CAD,即AD平分∠BAC;
(2)由角平分線的定義結(jié)合(1)的結(jié)論即可得出∠CBD+∠CBE=∠BAE+∠ABE,再根據(jù)三角形外角的性質(zhì)即可得出∠EBD=∠DEB,由此即可證出BD=DE.
解答 證明:(1)連接OD,如圖所示.
∵直線l與⊙O相切于點(diǎn)D,
∴OD⊥l.
∵l∥BC,
∴OD⊥BC,
∴$\widehat{BD}$=$\widehat{CD}$,
∴∠BAD=∠CAD,
∴AD平分∠BAC;
(2)∵BE平分∠ABC,
∴∠ABE=∠CBE.
又∵$\widehat{BD}$=$\widehat{CD}$,
∴∠BAD=∠CBD,
∴∠CBD+∠CBE=∠BAE+∠ABE.
又∵∠DEB=BAE+∠ABE,
∴∠EBD=∠DEB,
∴BD=DE.
點(diǎn)評 本題考查了切線的性質(zhì)、垂徑定理、圓周角定理以及角平分線的定義,通過角的計(jì)算找出∠BAD=∠CAD(∠EBD=∠DEB)是解題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com