【題目】已知四邊形ABCD中,E、F分別是AB、AD邊上的點(diǎn),DE與CF交于點(diǎn)G.
(1)如圖①,若四邊形ABCD是矩形,且DE⊥CF,求證;
(2)如圖②,若四邊形ABCD是平行四邊形,試探究:當(dāng)∠B與∠EGC滿足什么關(guān)系時(shí),使得成立?并證明你的結(jié)論;
(3)如圖③,若BA=BC=4,DA=DC=6,∠BAD=90°,DE⊥CF,請(qǐng)直接寫出的值.
【答案】(1)(2)見解析;(3)
【解析】分析:(1)根據(jù)矩形性質(zhì)得出∠A=∠FDC=90°,求出∠CFD=∠AED,證出△AED∽△DFC即可;
(2)當(dāng)∠B+∠EGC=180°時(shí),成立,證△DFG∽△DEA,得出,證△CGD∽△CDF,得出,即可得出答案;
(3)過C作CN⊥AD于N,CM⊥AB交AB延長(zhǎng)線于M,連接BD,設(shè)CN=x,△BAD≌△BCD,推出∠BCD=∠A=90°,證△BCM∽△DCN,求出CM=,在Rt△CMB中,由勾股定理得出BM2+CM2=BC2,代入得出方程(x-4)2+()2=42,求出CN=,證出△AED∽△NFC,即可得出答案.
(1)證明:∵四邊形ABCD是矩形,∴∠A=∠ADC=90°.
∴∠ADE+∠CDE=90°.
∵DE⊥CF,∴∠DCF+∠CDE=90°.
∴∠ADE=∠DCF.
∴△ADE∽△DCF,∴.
(2)當(dāng)∠B+∠EGC=180°時(shí),成立.
證明如下:在AD的延長(zhǎng)線上取點(diǎn)M,使CM=CF,則∠CMF=∠CFM.
∵AB∥CD,AD∥BC,∴∠A=∠CDM. ,∠CFM=∠FCB.
∵∠B+∠EGC=180°,∴∠FCB+∠BEG=180°.
∵∠AED+∠BEG=180°,∴∠AED=∠FCB.
∴∠CMF=∠AED.
∴△ADE∽△DCM.
∴.即.
(3).
過C作CN⊥AD于N,CM⊥AB交AB延長(zhǎng)線于M,連接BD,設(shè)CN=x,
∵∠BAD=90°,即AB⊥AD,
∴∠A=∠M=∠CNA=90°,
∴四邊形AMCN是矩形,
∴AM=CN,AN=CM,
∵在△BAD和△BCD中,
∴△BAD△BCD(SSS),
∴∠BCD=∠A=90°,
∴∠ABC+∠ADC=180°,
∵∠ABC+∠CBM=180°,
∴∠MBC=∠ADC,
∵∠CND=∠M=90°,
∴△BCM∽△DCN,
∴,
∴,
∴CM=,
在Rt△CMB中,CM=,BM=AM-AB=x-4,由勾股定理得:BM2+CM2=BC2,
∴(x-4)2+()2=42,
x=0(舍去),x=,
CN=,
∵∠A=∠FGD=90°,
∴∠AED+∠AFG=180°,
∵∠AFG+∠NFC=180°,
∴∠AED=∠CFN,
∵∠A=∠CNF=90°,
∴△AED∽△NFC,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:若 為數(shù)軸上三點(diǎn),若點(diǎn)到的距離是點(diǎn)到的距離倍,我們就稱點(diǎn)是的巧點(diǎn).若 為數(shù)軸上三點(diǎn),若點(diǎn)到的距離是點(diǎn)到 的距離一半,我們就稱點(diǎn)是的妙點(diǎn).如圖,點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為,表示的點(diǎn)到點(diǎn)的距離是,到點(diǎn)的距離是,那么點(diǎn)是的巧點(diǎn),點(diǎn)是的妙點(diǎn).
知識(shí)運(yùn)用:
(1)如圖 1,點(diǎn)表示的數(shù)是,點(diǎn)表示的數(shù)是,點(diǎn)表示的數(shù)是,那么點(diǎn)是(的( )
A.巧點(diǎn) B. 妙點(diǎn) C. 無法確定
(2)如圖 2,為數(shù)軸上兩點(diǎn),點(diǎn)所表示的數(shù)為,點(diǎn)所表示的數(shù)為,則(的巧點(diǎn)表示的數(shù)是 ;
拓展提升
(3)如圖 3,為數(shù)軸上兩點(diǎn),點(diǎn)所表示的數(shù)為,點(diǎn)所表示的數(shù)為.現(xiàn)有一只電子螞蟻P從點(diǎn) 出發(fā),以每秒單位的速度向右運(yùn)動(dòng),到達(dá)點(diǎn)停止. 當(dāng)經(jīng)過幾秒時(shí),和 其有一個(gè)點(diǎn)為其余兩點(diǎn)的巧點(diǎn)? (請(qǐng)直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)長(zhǎng)5m的梯子AB,斜靠在一豎直的墻AO上,這時(shí)AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點(diǎn).
(1)求梯子底端B外移距離BD的長(zhǎng)度;
(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市推出電腦上網(wǎng)包月制,每月收取費(fèi)用y(元)與上網(wǎng)時(shí)間x(小時(shí))的函數(shù)關(guān)系如圖所示,其中BA是線段,且BA∥x軸,AC是射線.
(1)當(dāng)x≥30,求y與x之間的函數(shù)關(guān)系式;
(2)若小李4月份上網(wǎng)20小時(shí),他應(yīng)付多少元的上網(wǎng)費(fèi)用?
(3)若小李5月份上網(wǎng)費(fèi)用為75元,則他在該月份的上網(wǎng)時(shí)間是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=mx+n(m≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第一、三象限內(nèi)的A、B兩點(diǎn),與y軸交于點(diǎn)C,過點(diǎn)B作BM⊥x軸,垂足為M,BM=OM,OB=2,點(diǎn)A的縱坐標(biāo)為4.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)連接MC,求四邊形MBOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人各射擊次,甲所中的環(huán)數(shù)是,,,,,,且甲所中的環(huán)數(shù)的平均數(shù)是,眾數(shù)是;乙所中的環(huán)數(shù)的平均數(shù)是,方差是4.根據(jù)以上數(shù)據(jù),對(duì)甲,乙射擊成績(jī)的正確判斷是( )
A.甲射擊成績(jī)比乙穩(wěn)定B.乙射擊成績(jī)比甲穩(wěn)定
C.甲,乙射擊成績(jī)穩(wěn)定性相同D.甲、乙射擊成績(jī)穩(wěn)定性無法比較
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若a+b=2,則稱a與b是關(guān)于1的平衡數(shù).
(1)①3與 是關(guān)于1的平衡數(shù);②4﹣x與 是關(guān)于1的平衡數(shù)(用含x的代數(shù)式表示).
(2)若a=2x2﹣3(x2+x)﹣4,b=2x﹣[3x﹣(4x+x2)﹣2],判斷a與b是否是關(guān)于1的平衡數(shù),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校羽毛球隊(duì)需要購(gòu)買6支羽毛球拍和x盒羽毛球,羽毛球拍市場(chǎng)價(jià)為200元/支,羽毛球?yàn)?/span>30元/盒.甲商場(chǎng)優(yōu)惠方案為:所有商品9折.乙商場(chǎng)優(yōu)惠方案為:買1支羽毛球拍送1盒羽毛球,其余原價(jià)銷售.
當(dāng)大于時(shí),分別用含的代數(shù)式表示在甲商場(chǎng)和乙商場(chǎng)購(gòu)買所有物品的費(fèi)用.
當(dāng)時(shí),請(qǐng)你通過計(jì)算說明選擇哪個(gè)商場(chǎng)購(gòu)買比較省錢.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式>x﹣1.
(1)當(dāng)m=1時(shí),求該不等式的解集;
(2)m取何值時(shí),該不等式有解,并求出解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com