【題目】在同一條道路上,甲車從A地到B地,乙車從B地到A地,乙先出發(fā),圖中的折線段表示甲、乙兩車之間的距離y(千米)與行駛時間x(小時)的函數(shù)關系的圖象.下列說法錯誤的是( )
A.乙先出發(fā)的時間為0.5小時
B.甲的速度是80千米/小時
C.甲出發(fā)0.5小時后兩車相遇
D.甲到B地比乙到A地早 小時
【答案】D
【解析】解:觀察0.5左邊和右邊的線段可得它們的斜率不一樣,則可得0.5小時是一個轉(zhuǎn)折點,即乙先出發(fā)的時間為0.5小時,故A正確;
乙的速度是 =60(千米/小時),則乙行完全程需要的時間是 (小時),
則甲所用的時間是:1.75-0.5=1.25(小時),甲的速度是 (千米/小時),故B正確;
相遇時間為 (小時),故C正確;
乙到A地比甲到B地早 -1.25= 小時,故D錯誤.
故選D.
行駛相遇問題.主要觀察圖象得到有用的信息,在0.5左邊和右邊的線段可得它們的斜率不一樣,可得0.5小時是一個轉(zhuǎn)折點;求出乙的速度和行完全程所需要的時間,對比乙行完全程所需要的時間與1.75小時,如果比1.75小時大,說明甲先到達B地,如果比1.75小時小,說明乙先到達A地,則作出判斷后即可求出甲行完全程所用的時間,以及速度,即可解答.
科目:初中數(shù)學 來源: 題型:
【題目】△ABC在平面直角坐標系中的位置如圖所示.
(1)作出△ABC關于軸對稱的△A1B1C1,并寫出△A1B1C1各頂點的坐標;
(2)將△ABC向右平移6個單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點的坐標;
(3)觀察△A1B1C和△A2B2C2,它們是否關于某直線對稱?若是,請用實線條畫出對稱軸。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,推理填空:
(1)∵∠1=_______(已知),
∴AC∥ED(同位角相等,兩直線平行).
(2)∵∠2=______(已知),
∴AB∥FD(內(nèi)錯角相等,兩直線平行).
(3)∵∠2+_______=180°(已知),
∴AC∥ED(同旁內(nèi)角互補,兩直線平行).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系 中,已知 , 兩點的坐標分別為 , , 是線段 上一點(與 , 點不重合),拋物線 ( )經(jīng)過點 , ,頂點為 ,拋物線 ( )經(jīng)過點 , ,頂點為 , , 的延長線相交于點 .
(1)若 , ,求拋物線 , 的解析式;
(2)若 , ,求 的值;
(3)是否存在這樣的實數(shù) ( ),無論 取何值,直線 與 都不可能互相垂直?若存在,請直接寫出 的兩個不同的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,AB∥CD∥x軸,BC∥DE∥y軸,且AB=CD=4 cm,OA=5 cm,DE=2 cm,動點P從點A出發(fā),以每秒1 cm的速度,沿ABC路線向點C運動;動點Q從點O出發(fā),以每秒2 cm的速度,沿OED路線向點D運動.若P,Q兩點同時出發(fā),其中一點到達終點時,運動停止.
(1)直接寫出B,C,D三個點的坐標;
(2)當P,Q兩點出發(fā)3 s時,求三角形PQC的面積;
(3)設兩點運動的時間為t s,用含t的式子表示運動過程中三角形OPQ的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如下數(shù)表是由從1開始的連續(xù)自然數(shù)組成的,觀察規(guī)律并填空:
(1)表中第8行的最后一個數(shù)是______,它是自然數(shù)_____的平方,第8行共有_____個數(shù);
(2)用含n的代數(shù)式表示:第n行的第一個數(shù)是___________,最后一個數(shù)是_____,第n行共有_________個數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k≠0)的圖象經(jīng)過點(1,0)和(0,2).
(1)當﹣2<x≤3時,求y的取值范圍;
(2)已知點P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com