【題目】在等腰中,,作的平分線交于點(diǎn),將繞點(diǎn)旋轉(zhuǎn),使的兩邊交直線于點(diǎn),交直線于點(diǎn).
(1)當(dāng)繞點(diǎn)旋轉(zhuǎn)到如圖①的位置時(shí),請(qǐng)直接寫出三條線段的數(shù)量關(guān)系;
(2)當(dāng)繞點(diǎn)旋轉(zhuǎn)到如圖②的位置時(shí),(1)中結(jié)論是否成立,若成立,請(qǐng)證明;若不成立,請(qǐng)寫出正確的結(jié)論,并說明理由;
(3)若,當(dāng)時(shí),請(qǐng)直接寫出線段的長(zhǎng)度.
【答案】(1);(2)不成立,應(yīng)為,見解析;(3) 或
【解析】
(1)結(jié)論:AE+CF=AD.如圖1中,作DH⊥BC于H.證明△DAE≌△DHF(ASA),即可解決問題.
(2)結(jié)論不成立.應(yīng)為CF-AE=AD.如圖②中,作DG⊥BC于點(diǎn)G,證明△DAE≌E△DGF(ASA),即可解決問題.
(3)分兩種情形分別求解:①如圖③-1中,作DH⊥BC于H.求出AD=DH=CH=1,利用(1)中結(jié)論即可解決問題.②如圖③-2中,當(dāng)∠CDF=15°時(shí),作DH⊥BC于H,求出FH=即可解決問題.
(1)結(jié)論:AE+CF=AD.
理由:如圖1中,作DH⊥BC于H.
∵AB=AC,∠A=90°,
∴∠ABC=∠C=45°,
∵∠A=∠DHB=90°,
∴∠ADH=360°-90°-90°-45°=135°,
∵∠EDF=135°,
∴∠ADH=∠EDF,
∴∠ADE=∠HDF,
∵BD平分∠ABC,DA⊥AB,DH⊥BC,
∴DA=DH,
∴△DAE≌△DHF(ASA),
∴AE=HF,
∵∠C=∠HDC=45°,
∴DH=CH=AD,
∴AE+CF=HF+CF=CH=AD.
(2)不成立 應(yīng)為
理由如下:作于點(diǎn),
∵
∴
∵平分
∴
∵
∴ ∠ABC=∠ACB=45°
∴ ∠ADG=360°-90°-90°-45°=135°
∵=135°
∴
又∵
∴
∴
∵
∴
∴,
∵
∴
(3)①如圖③-1中,作DH⊥BC于H.
由(1)可知:DA=DH=CH,設(shè)DA=DH=HC=a,則CD=a,AB=AC=BH=a+a,
∴2a+a=2+,
∴a=1,
∴AD=1,
∵∠CDF=15°,
∴∠ADE=180°-135°-15°=30°,
∴AE=,
∵AE+CF=AD,
∴CF=1-
②如圖③-2中,當(dāng)∠CDF=15°時(shí),作DH⊥BC于H,
∵AD=DH═CH=1,∠CFD=30°,
∴FH=DH=,
∴CF=FH-CH=-1
綜上所述,滿足條件的CF的值為 或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別交x軸、y軸于點(diǎn)B,C,正方形AOCD的頂點(diǎn)D在第二象限內(nèi),E是BC中點(diǎn),OF⊥DE于點(diǎn)F,連結(jié)OE,動(dòng)點(diǎn)P在AO上從點(diǎn)A向終點(diǎn)O勻速運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)Q在直線BC上從某點(diǎn)Q1向終點(diǎn)Q2勻速運(yùn)動(dòng),它們同時(shí)到達(dá)終點(diǎn).
(1)求點(diǎn)B的坐標(biāo)和OE的長(zhǎng);
(2)設(shè)點(diǎn)Q2為(m,n),當(dāng)tan∠EOF時(shí),求點(diǎn)Q2的坐標(biāo);
(3)根據(jù)(2)的條件,當(dāng)點(diǎn)P運(yùn)動(dòng)到AO中點(diǎn)時(shí),點(diǎn)Q恰好與點(diǎn)C重合.
①延長(zhǎng)AD交直線BC于點(diǎn)Q3,當(dāng)點(diǎn)Q在線段Q2Q3上時(shí),設(shè)Q3Q=s,AP=t,求s關(guān)于t的函數(shù)表達(dá)式.
②當(dāng)PQ與△OEF的一邊平行時(shí),求所有滿足條件的AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】劉徵是我國(guó)古代最杰出的數(shù)學(xué)家之一,他在《九算術(shù)圓田術(shù))中用“割圓術(shù)”證明了圓面積的精確公式,并給出了計(jì)算圓周率的科學(xué)方法(注:圓周率=圓的周長(zhǎng)與該圓直徑的比值)“割圓術(shù)”就是以“圓內(nèi)接正多邊形的面積”,來無限逼近“圓面積”,劉徽形容他的“割圓術(shù)”說:割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓合體,而無所失矣.劉徽計(jì)算圓周率是從正六邊形開始的,易知圓的內(nèi)接正六邊形可分為六個(gè)全等的正三角形,每個(gè)三角形的邊長(zhǎng)均為圓的半徑R.此時(shí)圓內(nèi)接正六邊形的周長(zhǎng)為6R,如果將圓內(nèi)接正六邊形的周長(zhǎng)等同于圓的周長(zhǎng),可得圓周率為3.當(dāng)正十二邊形內(nèi)接于圓時(shí),如果按照上述方法計(jì)算,可得圓周率為_____.(參考數(shù)據(jù):sinl5°=0.26)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著移動(dòng)終端設(shè)備的升級(jí)換代,手機(jī)已經(jīng)成為我們生活中不可缺少的一部分,為了解中學(xué)生在假期使用手機(jī)的情況(選項(xiàng):(A)和同學(xué)親友聊天;(B)學(xué)習(xí):(C)購(gòu)物;(D)游戲;(E)其他),端午節(jié)后某中學(xué)在全校范圍內(nèi)隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,得到如下圖表(部分信息未給出):
選項(xiàng) | 頻數(shù) | 頻率 |
A | ||
B | ||
C | ||
D | ||
E |
根據(jù)以上信息解答下列問題:
(1)求本次參與調(diào)查的總?cè)藬?shù).
(2)___________,___________,___________,并補(bǔ)全條形統(tǒng)計(jì)圖.
(3)若該中學(xué)約有800名學(xué)生,估計(jì)全校學(xué)生中利用手機(jī)購(gòu)物或玩游戲的共有多少人?并根據(jù)以上調(diào)查結(jié)果,就中學(xué)生如何合理使用手機(jī)給出你的一條建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,點(diǎn)為軸正半軸上一動(dòng)點(diǎn),連接,將沿翻折得,點(diǎn)分別為的中點(diǎn),連接并延長(zhǎng)交所在直線于點(diǎn),連接.當(dāng)為直角三角形時(shí),點(diǎn)坐標(biāo)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△DEC,使點(diǎn)A的對(duì)應(yīng)點(diǎn)D恰好落在邊AB上,點(diǎn)B的對(duì)應(yīng)點(diǎn)為E,連接BE.
(Ⅰ)求證:∠A=∠EBC;
(Ⅱ)若已知旋轉(zhuǎn)角為50°,∠ACE=130°,求∠CED和∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A是函數(shù)y=(x>0)上一動(dòng)點(diǎn),連接OA,線段OB與OA關(guān)于y軸對(duì)稱,將線段OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得線段OC,將線段OA繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得線段DA.
(1)在圖1中畫出線段OB、OC,保留作圖痕跡;
(2)連接AB、BC、AC,當(dāng)△AOB的面積等于△BOC的面積時(shí),求△ABC的面積;
(3)如圖3,若點(diǎn)D的坐標(biāo)為(m,n),直接寫出m與n的等量關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,以為直徑的交于點(diǎn),交于點(diǎn),是的切線;交于點(diǎn).
(1)求證:;
(2)填空:①若的面積為,則的面積為 ;
②當(dāng)的度數(shù)為 時(shí),四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“分塊計(jì)數(shù)法”:對(duì)有規(guī)律的圖形進(jìn)行計(jì)數(shù)時(shí),有些題可以采用“分塊計(jì)數(shù)”的方法.
例如:圖1有6個(gè)點(diǎn),圖2有12個(gè)點(diǎn),圖3有18個(gè)點(diǎn),……,按此規(guī)律,求圖10、圖n有多少個(gè)點(diǎn)?
我們將每個(gè)圖形分成完全相同的6塊,每塊黑點(diǎn)的個(gè)數(shù)相同(如圖),這樣圖1中黑點(diǎn)個(gè)數(shù)是6×1=6個(gè);圖2中黑點(diǎn)個(gè)數(shù)是6×2=12個(gè):圖3中黑點(diǎn)個(gè)數(shù)是6×3=18個(gè);所以容易求出圖10、圖n中黑點(diǎn)的個(gè)數(shù)分別是 、 .
請(qǐng)你參考以上“分塊計(jì)數(shù)法”,先將下面的點(diǎn)陣進(jìn)行分塊(畫在答題卡上),再完成以下問題:
(1)第5個(gè)點(diǎn)陣中有 個(gè)圓圈;第n個(gè)點(diǎn)陣中有 個(gè)圓圈.
(2)小圓圈的個(gè)數(shù)會(huì)等于271嗎?如果會(huì),請(qǐng)求出是第幾個(gè)點(diǎn)陣.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com