【題目】在平面直角坐標系中的位置如圖所示,其中每個小正方形的邊長為1個單位長度.按要求作圖:

1)畫出關(guān)于原點的中心對稱圖形

2)畫出將繞點順時針方向旋轉(zhuǎn)90°得到的

3)設邊上一點,在上與點對應的點是.則點坐標為__________

【答案】1)見解析;(2)見解析;(3)(b,-a).

【解析】

1)利用關(guān)于原點對稱的點的坐標特征寫出A1、B1、C1的坐標,然后描點,順次連接即可;
2)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì)畫出AB、C的對應點A2、B2、C2,從而得到△A2B2C2;
3)利用AA2、BB2CC2的坐標特征確定對應點的坐標變換規(guī)律,從而寫出點P1坐標.

解:(1)如圖,△A1B1C1即為所作;

2)如圖,△A2B2C2即為所作;
3)點P1坐標為(b,-a).
故答案為:(b-a).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】隨著移動計算技術(shù)和無線網(wǎng)絡的快速發(fā)展,移動學習方式越來越引起人們的關(guān)注,某校計劃將這種學習方式應用到教育學中,從全校1500名學生中隨機抽取了部分學生,對其家庭中擁有的移動設備的情況進行調(diào)查,并繪制出如下的統(tǒng)計圖①和圖②,根據(jù)相關(guān)信息,解答下列問題:

(1)本次接受隨機抽樣調(diào)查的學生人數(shù)為   ,圖①中m的值為   ;

(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);

(3)根據(jù)樣本數(shù)據(jù),估計該校1500名學生家庭中擁有3臺移動設備的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點DABC的邊AC上,要判定ADBABC相似,添加一個條件,不正確的是( 。

A. ABD=C B. ADB=ABC C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c經(jīng)過點A(5,)、點B(9,﹣10),與y軸交于點C,點P是直線AC上方拋物線上的一個動點;

(1)求拋物線對應的函數(shù)解析式;

(2)過點P且與y軸平行的直線l與直線BC交于點E,當四邊形AECP的面積最大時,求點P的坐標;

(3)當∠PCB=90°時,作∠PCB的角平分線,交拋物線于點F.

①求點P和點F的坐標;

②在直線CF上是否存在點Q,使得以F、P、Q為頂點的三角形與BCF相似,若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)y(2m+1)x+m3;

(1)若函數(shù)圖象經(jīng)過原點,求m的值;

(2)若函數(shù)圖象在y軸的截距為﹣2,求m的值;

(3)若函數(shù)的圖象平行直線y3x3,求m的值;

(4)若這個函數(shù)是一次函數(shù),且y隨著x的增大而減小,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊ABC的邊長為6,ADBC邊上的中線,MAD上的動點,E是邊AC上一點,若AE=2,則EM+CM的最小值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x+bx+c y軸相交于點 A(0,3),與x正半軸相交于點B,對稱軸是直線 x=1

(1)求此拋物線的解析式以及點B的坐標.

(2)動點M 從點 O 出發(fā),以每秒2個單位長度的速度沿 x 軸正方向運動,同時動點 N 從點O出發(fā),以每秒 3 個單位長度的速度沿y 軸正方向運動,當N點到達 A 點時,M、N同時停止運動.過動點 M x 軸的垂線交線段 AB 于點Q,交拋物線于點 P,設運動的時間為 t 秒.

t 為何值時,四邊形 OMPN 為矩形.

t>0 時,△BOQ 能否為等腰三角形?若能,求出 t 的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,所對邊分別是,且,若滿足,則稱為奇異三角形,例如等邊三角形就是奇異三角形.

(1)若,判斷是否為奇異三角形,并說明理由;

(2)若,,求的長;

(3)如圖2,在奇異三角形中,,點邊上的中點,連結(jié),分割成2個三角形,其中是奇異三角形,是以為底的等腰三角形,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:E是∠AOB的平分線上一點,EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點F.

(1)求證:OE是CD的垂直平分線.

(2)若∠AOB=60,請你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。

查看答案和解析>>

同步練習冊答案