【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,
(1)求證:無論k取什么實(shí)數(shù)值,該方程總有兩個(gè)不相等的實(shí)數(shù)根?
(2)當(dāng)Rt△ABC的斜邊a=,且兩條直角邊的長(zhǎng)b和c恰好是這個(gè)方程的兩個(gè)根時(shí),求k的值.
【答案】(1)見解析;(2)3
【解析】
(1)根據(jù)根的判別式的符號(hào)來證明;
(2)根據(jù)韋達(dá)定理得到b+c=2k+1,bc=4k-3.又在直角△ABC中,根據(jù)勾股定理,得(b+c)2﹣2bc=()2,由此可以求得k的值.
(1)證明:∵△=[﹣(2k+1)]2﹣4×1×(4k﹣3)=4k2﹣12k+13=(2k﹣3)2+4,
∴無論k取什么實(shí)數(shù)值,總有=(2k﹣3)2+4>0,即△>0,
∴無論k取什么實(shí)數(shù)值,該方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)解:∵兩條直角邊的長(zhǎng)b和c恰好是方程x2﹣(2k+1)x+4k﹣3=0的兩個(gè)根,得
∴b+c=2k+1,bc=4k﹣3,
又∵在直角△ABC中,根據(jù)勾股定理,得
b2+c2=a2,
∴(b+c)2﹣2bc=()2,即(2k+1)2﹣2(4k﹣3)=31,
整理后,得k2﹣k﹣6=0,解這個(gè)方程,得k=﹣2或k=3,
當(dāng)k=﹣2時(shí),b+c=﹣4+1=﹣3<0,不符合題意,舍去,當(dāng)k=3時(shí),b+c=2×3+1=7,符合題意,故k=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=a,AD=b,點(diǎn)E為對(duì)角線AC上一點(diǎn),連接DE,以DE為邊,作矩形DEFG,點(diǎn)F在邊BC上;
(1)觀察猜想:如圖1,當(dāng)a=b時(shí),=______,∠ACG=______;
(2)類比探究:如圖2,當(dāng)a≠b時(shí),求的值(用含a、b的式子表示)及∠ACG的度數(shù);
(3)拓展應(yīng)用:如圖3,當(dāng)a=6,b=8,且DF⊥AC,垂足為H,求CG的長(zhǎng);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)3×2的矩形(即長(zhǎng)為3,寬為2)可以用兩種不同的方式分割成3或6個(gè)邊長(zhǎng)是正整數(shù)的小正方形,即:小正方形的個(gè)數(shù)最多是6個(gè),最少是3個(gè).
(1)一個(gè)5×2的矩形用不同的方式分割后,小正方形的個(gè)數(shù)最多是 個(gè),最少是 個(gè);
(2)一個(gè)7×2的矩形用不同的方式分割后,小正方形的個(gè)數(shù)最多是 個(gè),最少是 個(gè);
(3)一個(gè)(2n+1)×2的矩形用不同的方式分割后,小正方形的個(gè)數(shù)最多是 個(gè),最少是 個(gè).(n是正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)的圖象在第一象限交于點(diǎn)A(3,2),與y軸的負(fù)半軸交于點(diǎn)B,且OB=4.
(1)求函數(shù)和y=kx+b的解析式;
(2)結(jié)合圖象直接寫出不等式組0<<kx+b的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系內(nèi),已知點(diǎn)A(0,6)、點(diǎn)B(8,0),動(dòng)點(diǎn)P從點(diǎn)A開始在線段AO上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O移動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B開始在線段BA上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A移動(dòng),設(shè)點(diǎn)P、Q移動(dòng)的時(shí)間為t秒.
(1)求直線AB的解析式;
(2)當(dāng)t為何值時(shí),△APQ與△AOB相似?
(3)當(dāng)t為何值時(shí),△APQ的面積為個(gè)平方單位?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年中國(guó)北京世園會(huì)開園期間,為了滿足不同人群的游覽需求,組委會(huì)傾情打造了四條趣玩路線,分別是“解密世園會(huì)”、“愛我家,愛園藝”、“園藝小清新之旅”和“快速車覽之旅”小明一家想通過抽簽的方法選擇其中的兩條路線進(jìn)行游玩,于是他們制作了如下四張卡片,然后從四張卡片中隨機(jī)抽取其中的兩張若小明最鐘愛的游玩路線是“園藝小清新之旅",小明的爸爸和媽媽最鐘愛的游玩路線是“解密世園會(huì)”,請(qǐng)用列表法或畫樹狀圖法求出:他們同時(shí)抽中“園藝小清新之旅”和“解密世園會(huì)”的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)和點(diǎn),頂點(diǎn)為.
(1)求這條拋物線的表達(dá)式和頂點(diǎn)的坐標(biāo);
(2)點(diǎn)關(guān)于拋物線對(duì)稱軸的對(duì)應(yīng)點(diǎn)為點(diǎn),聯(lián)結(jié),求的正切值;
(3)將拋物線向上平移個(gè)單位,使頂點(diǎn)落在點(diǎn)處,點(diǎn)落在點(diǎn)處,如果,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a#0)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)(0,1)和(﹣1,0).下列結(jié)論:①ab<0;②b2>4ac;③0<b<1;④當(dāng)x<﹣1時(shí),y<0.其中正確結(jié)論的個(gè)數(shù)是( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商業(yè)集團(tuán)新建一小車停車場(chǎng),經(jīng)測(cè)算,此停車場(chǎng)每天需固定支出的費(fèi)用(設(shè)施維修費(fèi)、車輛管理人員工資等)為800元.為制定合理的收費(fèi)標(biāo)準(zhǔn),該集團(tuán)對(duì)一段時(shí)間每天小車停放輛次與每輛次小車的收費(fèi)情況進(jìn)行了調(diào)查,發(fā)現(xiàn)每輛次小車的停車費(fèi)不超過5元時(shí),每天來此處停放的小車可達(dá)1440輛次;若停車費(fèi)超過5元,則每超過1元,每天來此處停放的小車就減少120輛次.為便于結(jié)算,規(guī)定每輛次小車的停車費(fèi)x(元)只取整數(shù),用y(元)表示此停車場(chǎng)的日凈收入,且要求日凈收入不低于2512元.(日凈收入=每天共收取的停車費(fèi)﹣每天的固定支出)
(1)當(dāng)x≤5時(shí),寫出y與x之間的關(guān)系式,并說明每輛小車的停車費(fèi)最少不低于多少元;
(2)當(dāng)x>5時(shí),寫出y與x之間的函數(shù)關(guān)系式(不必寫出x的取值范圍);
(3)該集團(tuán)要求此停車場(chǎng)既要吸引客戶,使每天小車停放的輛次較多,又要有較大的日凈收入.按此要求,每輛次小車的停車費(fèi)應(yīng)定為多少元?此時(shí)日凈收入是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com