某種商品的進價為每件50元,售價為每件60元.為了促銷,決定凡是購買10件以上的,每多買一件,售價就降低0.10元(例如,某人買20件,于是每件降價0.10×(20-10)=1元,就可以按59元/件的價格購買),但是最低價為55元/件.同時,商店在出售中,還需支出稅收等其他雜費1.6元/件.
(1)求顧客一次至少買多少件,才能以最低價購買?
(2)寫出當(dāng)出售x件時(x>10),利潤y(元)與出售量x(件)之間的函數(shù)關(guān)系式;
(3)有一天,一位顧客買了47件,另一位顧客買了60件,結(jié)果發(fā)現(xiàn)賣了60件反而比賣了47件賺的錢少.為了使每次賣的越多賺的錢也越多,在其他促銷條件不變的情況下,最低價55元/件至少要提高到多少?為什么?
(1)60;(2)當(dāng)10<x≤60時,y=-0.1x2+9.4x;當(dāng)x>60時,y=3.4x;(3)56.3元
解析試題分析:(1)設(shè)顧客一次至少購買x件,根據(jù)“購買10件以上的,每多買一件,售價就降低0.10元”即可列方程求解;
(2)分當(dāng)10<x≤60時,當(dāng)x>60時,這兩種情況,根據(jù)“購買10件以上的,每多買一件,售價就降低0.10元”即可列出函數(shù)關(guān)系式;
(3)先把(2)中當(dāng)10<x≤60時,對應(yīng)的函數(shù)關(guān)系式配方,再根據(jù)二次函數(shù)的性質(zhì)求解即可.
(1)設(shè)顧客一次至少購買x件,由題意得
60-0.1(x-10)=55,解得x=60
答:顧客一次至少買60件,才能以最低價購買;
(2)當(dāng)10<x≤60時,y=[60-0.1(x-10)-50]x-1.6x=-0.1x2+9.4x
當(dāng)x>60時,y=(55-50-1.6)x=3.4x;
(3)利潤y=-0.1x2+9.4x=-0.1(x-47)2+220.9,
∵當(dāng)x=47時,利潤y有最大值,而超過47時,利潤y反而減少.
要想賣的越多賺的越多,即隨 的增大而增大,
由二次函數(shù)性質(zhì)可知,x≤47,
∴當(dāng)x=47時,最低售價應(yīng)定為60-0.1×(47-10)=56.3元.
考點:二次函數(shù)的應(yīng)用
點評:此類問題綜合性強,難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年江蘇省南京市溧水縣中考數(shù)學(xué)一模試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年浙江省杭州市中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com