【題目】已知樹枝AB長為1.將樹枝AB按照如下規(guī)則進行分形.其中1級分形圖中,由B點處生長出兩條樹枝BD,BE,每條樹枝長均為AB長的一半;在2級分形圖中,D、E兩點處生長出的每條樹枝都等于DB長的一半.按照上面分形方法得到3級、4級分形圖形.

按照上面的規(guī)律,在3級分形圖中,樹枝長度的總和是_____________;

n級分形圖中,樹枝總條數(shù)是___________(用含n的代數(shù)式表示).

【答案】4

【解析】

先分別求出1級、2級分形圖中,樹枝長度的總和,然后可求出3級分形圖中,樹枝長度的總和;先分別求出1級、2級、3級分形圖中,樹枝總條數(shù),然后歸納總結(jié)出一般規(guī)律即可.

①由題意得:1級分形圖中,樹枝長度的總和為

2級分形圖中,樹枝長度的總和為

3級分形圖中,樹枝長度的總和為;

1級分形圖中,樹枝總條數(shù)為

2級分形圖中,樹枝總條數(shù)為

3級分形圖中,樹枝總條數(shù)為

歸納類推得,n級分形圖中,樹枝總條數(shù)為

故答案為:4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是矩形ABCD內(nèi)的任意一點,連接PA、PB、PCPD,得到PAB、PBCPCD、PDA,設(shè)它們的面積分別是S1、S2、S3、S4,給出如下結(jié)論:

S1+S2=S3+S4 S2+S4= S1+ S3

③若S3=2S1,則S4=2S2④若S1= S2,則P點在矩形的對角線上

其中正確的結(jié)論的序號是(把所有正確結(jié)論的序號都填在橫線上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖是201911月份的日歷,用一個正方形任意圈住4個數(shù)(如圖),仔細觀察這4個數(shù),不改變正方形的大小,任意移動方框的位置,找出規(guī)律.

(1)若把第一行第一列的那個數(shù)表示為,其余各數(shù)分別用含的代數(shù)式表示,請把表格補充完整

2)求這四個數(shù)的和(用含的代數(shù)式表示,要求合并同類項化簡)

3)小明媽媽的生日快到了,小明想送媽媽一個生日禮物,可是卻不知道媽媽的生日是幾號,于是就問媽媽,可媽媽說我的生日那天在本月日歷上橫豎列相鄰的四個數(shù)字的和68的四個數(shù)字里面,并且這四個數(shù)中最大的數(shù)字那天就是我的生日。請你幫助小明確定媽媽的生日.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南昌的霧霾引起了小張對環(huán)保問題的重視.一次旅游小張思考了一個問題.從某地到南昌,若乘火車需要小時,若乘汽車需要小時.這兩種交通工具平均每小時二氧化碳的排放量之和為千克,火車全程二氧化碳的排放總量比汽車的多千克,分別求火車和汽車平均每小時二氧化碳的排放量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某采摘農(nóng)場計劃種植兩種草莓共6畝,根據(jù)表格信息,解答下列問題:

1)若該農(nóng)場每年草莓全部被采摘的總收入為元,那么兩種草莓各種多少畝? 2)若要求種植種草莓的畝數(shù)不少于種植種草莓的一半,那么種植種草莓多少畝時,可使該農(nóng)場每年草莓全部被采摘的總收入最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題

16+(﹣)﹣2﹣(﹣1.5).

2)﹣66×4﹣(﹣2.5)÷(﹣0.1).

3)()×12

4

5)(﹣22×5﹣(﹣23÷4

6)(﹣104+[(﹣42﹣(3+32)×2]

7

8)(﹣22+(﹣3)×[(﹣42+2]﹣(﹣32÷(﹣2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC中

(1)如圖1,P,Q是BC邊上的兩點,AP=AQ,∠BAP=20°,求∠AQB的度數(shù);

(2)點P,Q是BC邊上的兩個動點(不與點B,C重合),點P在點Q的左側(cè),且AP=AQ,點Q關(guān)于直線AC的對稱點為M,連接AM,PM.

①依題意將圖2補全;

②小茹通過觀察、實驗提出猜想:在點P,Q運動的過程中,始終有PA=PM,小茹把這個猜想與同學(xué)們進行交流,通過討論,形成了證明該猜想的幾種想法:

想法1:要證明PA=PM,只需證△APM是等邊三角形;

想法2:在BA上取一點N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;

想法3:將線段BP繞點B順時針旋轉(zhuǎn)60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…

請你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】企業(yè)舉行愛心一日捐活動,捐款金額分為五個檔次,分別是50元,100元,150元,200元,300元.宣傳小組隨機抽取部分捐款職工并統(tǒng)計了他們的捐款金額,繪制成兩個不完整的統(tǒng)計圖,請結(jié)合圖表中的信息解答下列問題:

1)宣傳小組抽取的捐款人數(shù)為_____人,請補全條形統(tǒng)計圖;

2)在扇形統(tǒng)計圖中,求100元所對應(yīng)扇形的圓心角的度數(shù);

3)已知該企業(yè)共有500人參與本次捐款,請你估計捐款總額大約為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(背景知識)

數(shù)軸是初中數(shù)學(xué)的一個重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:若數(shù)軸上點、點表示的數(shù)分別為、,則、兩點之間的距離,線段的中點表示的數(shù)為.

(問題情境)

如圖,數(shù)軸上點表示的數(shù)為,點表示的數(shù)為8,點從點出發(fā),以每秒3個單位長度的速度沿數(shù)軸向右勻速運動,同時點從點出發(fā),以每秒2個單位長度的速度向左勻速運動,設(shè)運動時間為秒(.

(綜合運用)

1)填空:

、兩點之間的距離________,線段的中點表示的數(shù)為__________.

②用含的代數(shù)式表示:秒后,點表示的數(shù)為____________;點表示的數(shù)為___________.

③當(dāng)_________時,、兩點相遇,相遇點所表示的數(shù)為__________.

2)當(dāng)為何值時,.

3)若點的中點,點的中點,點在運動過程中,線段的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出線段的長.

查看答案和解析>>

同步練習(xí)冊答案