【題目】(1)問題
如圖1,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),∠DPC=∠A=∠B=90°,求證:ADBC=APBP.
(2)探究
如圖2,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),當(dāng)∠DPC=∠A=∠B=θ時(shí),上述結(jié)論是否依然成立?說明理由.
(3)應(yīng)用
請(qǐng)利用(1)(2)獲得的經(jīng)驗(yàn)解決問題:如圖3,在△ABD中,AB=6,AD=BD=5,點(diǎn)P以每秒1個(gè)單位長度的速度,由點(diǎn)A出了,沿邊AB向點(diǎn)B運(yùn)動(dòng),且滿足∠DPC=∠A,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),當(dāng)以D為圓心,以DC為半徑的圓與AB相切時(shí),求t的值.
【答案】(1)證明見試題解析;(2)成立,理由見試題解析;(3)1或5.
【解析】
試題分析:(1)如圖1,由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運(yùn)用相似三角形的性質(zhì)即可解決問題;
(2)如圖2,由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運(yùn)用相似三角形的性質(zhì)即可解決問題;
(3)如圖3,過點(diǎn)D作DE⊥AB于點(diǎn)E,根據(jù)等腰三角形的性質(zhì)可得AE=BE=3,根據(jù)勾股定理可得DE=4,由題可得DC=DE=4,則有BC=5﹣4=1.易證∠DPC=∠A=∠B.根據(jù)ADBC=APBP,就可求出t的值.
試題解析:(1)如圖1,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠ADP=∠BPC,∴△ADP∽△BPC,∴,∴ADBC=APBP;
(2)結(jié)論ADBC=APBP仍然成立.理由:如圖2,
∵∠BPD=∠DPC+∠BPC,∠BPD=∠A+∠ADP,∴∠DPC+∠BPC=∠A+∠ADP,∵∠DPC=∠A=∠B=θ,∴∠BPC=∠ADP,∴△ADP∽△BPC,∴,∴ADBC=APBP;
(3)如圖3,過點(diǎn)D作DE⊥AB于點(diǎn)E.∵AD=BD=5,AB=6,∴AE=BE=3,由勾股定理可得DE=4,∵以點(diǎn)D為圓心,DC為半徑的圓與AB相切,∴DC=DE=4,∴BC=5﹣4=1,又∵AD=BD,∴∠A=∠B,∴∠DPC=∠A=∠B,由(1)、(2)的經(jīng)驗(yàn)可知ADBC=APBP,∴5×1=t(6﹣t),解得:,,∴t的值為1秒或5秒.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點(diǎn),過點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
(1)求證:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解居民月用水量,某市對(duì)某區(qū)居民用水量進(jìn)行了抽樣調(diào)查,并制成如下直方圖.
(1)這次一共抽查了戶;
(2)用水量不足10噸的有戶,用水量超過16噸的有戶;
(3)假設(shè)該區(qū)有8萬戶居民,估計(jì)用水量少于10噸的有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的方程x2+k=6x(k為常數(shù))沒有實(shí)數(shù)根,則k的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,∠QPN的頂點(diǎn)P在正方形ABCD兩條對(duì)角線的交點(diǎn)處,∠QPN=α,將∠QPN繞點(diǎn)P旋轉(zhuǎn),旋轉(zhuǎn)過程中∠QPN的兩邊分別與正方形ABCD的邊AD和CD交于點(diǎn)E和點(diǎn)F(點(diǎn)F與點(diǎn)C,D不重合).
(1)如圖①,當(dāng)α=90°時(shí),DE,DF,AD之間滿足的數(shù)量關(guān)系是 ;
(2)如圖②,將圖①中的正方形ABCD改為∠ADC=120°的菱形,其他條件不變,當(dāng)α=60°時(shí),(1)中的結(jié)論變?yōu)镈E+DF=AD,請(qǐng)給出證明;
(3)在(2)的條件下,若旋轉(zhuǎn)過程中∠QPN的邊PQ與射線AD交于點(diǎn)E,其他條件不變,探究在整個(gè)運(yùn)動(dòng)變化過程中,DE,DF,AD之間滿足的數(shù)量關(guān)系,直接寫出結(jié)論,不用加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將某樣本數(shù)據(jù)分析整理后分成6組,且組距為5,畫頻數(shù)分布折線圖時(shí),從左到右第三組的組中值為20.5,則分布兩端虛設(shè)組組中值為 和 。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com